
The Next Paradigm for Modeling
and Simulation?

Integrating Scientific Machine Learning Methods
in FMI-based Co-Simulation Tools

PhD Dissertation

Christian Møldrup Legaard

Department of Electrical and Computer Engineering

Aarhus University

October 2023

1

Abstract

Recent advances in the field of machine learning methods has allowed us to
solve increasingly complex problems across a wide range of domains. In par-
ticular, the class of models collectively known as neural networks has proven
to be especially effective when compared to other data-driven models. A
natural question to ask is if the same formalism can be applied to gain in-
sight into the types of systems we study in natural sciences and engineering.
Scientific machine learning is a rapidly evolving field that seeks to infuse ma-
chine learning methods with knowledge of a system’s physics and properties
to obtain accurate and parsimonious models directly from data. By encoding
knowledge in the models researchers seek to address one of the common cri-
tiques of using machine learning models over first-principles modeling, which
is that they are unreliable or unpredictable. This has the potential to greatly
reduce the barrier towards adopting model-based design for the development
of complex systems, since models of the system’s components would require
much less effort to obtain. The main contribution of this thesis is survey-
ing scientific machine learning techniques and describing how they can be
integrated in existing simulation tools based on the Functional Mock-up In-
terface. Part of this contribution is the development of open-source tools
allowing high-level scripting languages and state-of-the-art machine learning
libraries to be fully leveraged within this context. The research conducted
as part of this PhD project has demonstrated how such techniques can be
applied, however there is still a need for more systematic benchmarks to
determine their effectiveness on a wide range of systems representative of
real-life applications.

Resumé

Fremskridt inden for machine learning har gjort det muligt at løse opgaver
som ville være nær umulige at løse med h̊andskrevne algoritmer. Af data-
drevne algoritmer har særligt neurale netværk har vist sig at være særdelses
effektive p̊a tværs af en bred vifte af opgaver. Et naturligt spørgsmål er
om denne fremgangsmåde er velegnet til at takle typen af opgaver som er
karakteristiske indenfor natur- og ingeniørvidenskaben. Scientific machine
learning er et hurtigt voksende felt som forsøger at berige machine learning
modeller med ekspert-viden om det fysiske systems egenskaber for at kunne
aflede præcise og retvisende modeller ud fra m̊alinger. Ved at indkorporere
ekspert-viden i modellerne kan man imødekomme et hyppigt kritik punkt
ved brugen af machine learning indenfor modellering, hvilket er at de leder
til modeller som er up̊alidlige eller uforudsiglige. Anvendelsen af scientific
machine learning har potentialet til at realisere den fulde værdi af model-
baseret design, da det vil blive langt nemmere at modellere de forskellige
dele af systemet. Hoved bidraget af denne PhD afhandling er at gennemg̊a
de væsenligste scientific machine learning methoder og beskrive hvordan de
kan anvendes i eksisterende simulationsværktøjer som understøtter ”Func-
tional Mock-up Inteface”-standarden. Yderligere bidrager PhD projektet
med open-source redskaber som giver adgang til høj-niveau scripting sprog,
samt de nyeste machine learning redskaber, i denne kontekst. I afhandlin-
gen har vi demonstreret anvendelsen af disse redskaber p̊a en række simple
systemer. Der er stadig et behov for at anvende dem p̊a en større skala i et
systematisk benchmark.

1

Acknowledgements

Finishing a doctoral thesis is a milestone along the path paved by countless
people in my life. First and foremost I would like to thank my parents,
Ulla and Torben — you have given me a curiosity for life and given me the
independence I have today. Secondly, I would like to thank my supervisors:
Peter Gorm Larsen, Alexandros Iosifides, Cládio Gomes, and Mahdi Abkar,
in no particular order — I appreciate your guidance navigating the many
facets of academic and personal life. Third, I would like to thank my long time
collaborators and friends Thomas Schranz and Ján Drgon̆a for continuous
feedback and providing me the opportunity to visit and stay at the Pacific
Northwest National Laboratory in Washington as a researcher. Finally, I
would like to thank the Poul Due Jensen Foundation for funding my research
through the project Digital Twins for Cyber-Physical Systems, as well as
the DIGIT Aarhus University Centre for Digitalisation, Big Data and Data
Analytics and finally the MADE Digital project.

2

Contents

I Overview 6

1 Introduction 7
1.1 Motivation . 7
1.2 Related Disciplines . 11

1.2.1 Numerical Methods . 11
1.2.2 Dynamical Systems . 13
1.2.3 Modeling and Simulation 13
1.2.4 Co-simulation . 14
1.2.5 Surrogate Modelling 14
1.2.6 Optimization . 14
1.2.7 Machine Learning . 15
1.2.8 Deep Learning . 16
1.2.9 System Identification and Control 16

1.3 Research Objective . 17
1.4 Reader’s Guide . 18

1.4.1 Contributions . 19
1.4.2 Supplemental Code . 20

2 Modeling and Simulation 22
2.1 What is a simulation? . 22
2.2 Example: Pendulum . 24
2.3 Numerical Solvers . 26
2.4 Modeling error . 31

3 Scientific Machine Learning 33
3.1 Optimization . 34

3.1.1 Gradient-Descent . 35
3.1.2 Closed-form Solution 35
3.1.3 Automatic Differentiation 37

3.2 Differentiable Simulation . 41
3.3 Neural Network-based models 44

3

3.3.1 Multi-Layer Perceptron 45
3.3.2 Taxonomy . 47
3.3.3 Neural Ordinary Differential Equations 47
3.3.4 Physics-Informed Neural Networks 49

3.4 Model-based Fault Identification 51
3.5 Simulation and Control . 55

3.5.1 Workflow . 57
3.5.2 Physical System . 59
3.5.3 Identification . 60
3.5.4 Designing the Controller 62

4 Co-simulation 65
4.1 Example: Controlled Robotic Arm 65

4.1.1 Controlled Robot . 67
4.1.2 Controller . 68

4.2 Monolithic vs Co-simulation 69
4.3 Functional Mock-up Interface 72

4.3.1 Implementing a FMU 72
4.4 Universal Functional Mock-up Units 74
4.5 Machine Learning and Co-Simulation 77

5 Conclusion 80
5.1 SciML in Simulation . 80

5.1.1 Systematic Benchmarking 84
5.1.2 Experimental Design and Training 84
5.1.3 Knowledge Incorporation 85

5.2 Tool Integration . 86
5.2.1 Ease of use . 87
5.2.2 Extend Support for ML features 87
5.2.3 Performance Benchmarking 87

5.3 SciML in related applications 88
5.3.1 Parameter Estimation 89
5.3.2 Control . 89
5.3.3 Design Optimization 89

5.4 Thank you . 90

Bibliography 92

4

II Publications 108

6 Constructing Neural Network Based Models for Simulating
Dynamical Systems 109

7 A Universal Mechanism for Implementing Functional Mock-
up Units 144

8 Rapid Prototyping of Self-Adaptive-Systems using Python
Functional Mock-up Units 154

9 Neuromancer Framework 167

10 Portable runtime environments for Python-based FMUs: Adding
Docker support to UniFMU 168

11 Coupling physical and machine learning models: case study
of a single-family house 175

12 Energy Prediction under Changed Demand Conditions: Ro-
bust Machine Learning Models and Input Feature Combina-
tions 183

5

Part I

Overview

6

Chapter 1

Introduction

”Data-driven discovery is currently revolutionizing how we model, predict, and
control complex systems. The most pressing scientific and engineering problems
of the modern era are not amenable to empirical models or derivations based on
first-principles. Increasingly, researchers are turning to data-driven approaches
for a diverse range of complex systems, such as turbulence, the brain, climate,
epidemiology, finance, robotics, and autonomy.”

— Steven L. Brunton & J. Nathan Kutz [20]

1.1 Motivation

The systems that we are designing today are growing increasingly complex.
Most of the systems we design today are comprised of both software and
physical components that must interact carefully to ensure the function and
safety of system. Additionally, there is an increased trend towards autonomy,
eliminating the possibility for a human to intervene if something goes wrong,
which puts a greater responsibility on the people engineering such systems.
This type of system has been referred to by many names and their design
challenges have been discussed extensively: embedded systems [58], Cyber-
physical systems [75, 41, 125], and systems of systems [90].

Models are fundamental tools for building an understanding of how a
physical system behaves [25]. Not only do these models allow us to pre-
dict what the future may look like, but they also allow us to develop an
understanding of what causes the observed behavior. In engineering, mod-
els are used to improve the system design [43, 114], design optimal control
policy [46, 34, 37], simulate faults [97, 88], forecast future behavior [116], or

7

True system

prior knowledge

SciML

Data

Domain expert

first-principles model

ML model

Figure 1.1: Deriving model using first-principles versus obtaining it from
data using ML.

assess the desired operational performance [62]. The formalism we use for
defining the model depends on which properties of the physical system we
are trying to capture. There are two fundamentally different ways to model
the true system as shown in fig. 1.1. One is to have a domain expert derive
it from first-principles which often involves making a collection of assump-
tions to simplify the resulting model. The other approach is to use Machine
learning (ML) as a means of obtaining a model that hopefully captures the
properties of the true system that are important to us. First-principles mod-
eling is sometimes referred to as white-box modeling because we can see and
rationalize about the internals of the model [79]. The models obtained using
ML are sometimes referred to as black-box models, because the claim is that
we can not understand or rationalize about what is going on inside. A strong
argument for using an ML based approach is that it reduces the effort/time
required to obtain an accurate model of a system. Another argument is that
our theoretical understanding of some physical system may be limited or our
understanding of the process may be biased. In general the more complex
systems we are dealing with the stronger the motivation for using ML be-
comes because of the effort required to construct an accurate model using
first-principles.

In recent years there has been an increased interest in applying ML to
solve problems in physical sciences and engineering [24]. The general idea is
that a domain expert can encode prior knowledge in one way or the other

8

1500s 1900s 2000s

Empirical
Science

Theoretical
Science

Computational
Science

?
Science

Figure 1.2: Scientific Paradigms. Inspired by [60, fig. 1]

during the ML process to create more accurate and parsimonious models.
We use the term Scientific machine learning (SciML) introduced in [9, 102]
to refer to the idea leveraging knowledge of the true system to create more
accurate ML models. Other terms used to refer to a similar idea are hy-
brid modeling [128, 129], physics informed ML [64], and theory-guided data
science [65], and data-driven science [21]. In the context of this thesis we
define SciML as the study of methods for learning useful information based
on data captured from physical systems or high fidelity simulations. The
field of SciML draws from ideas from many disciplines such as applied math-
ematics, statistics, physics, engineering and computer science. The growing
popularity of SciML should also be attributed to the recent explosion in re-
search in the field of deep learning (DL) [50]. A byproduct of DL research is
the development of software frameworks such as [1, 18, 95] that allows ML
algorithms to process large amounts of data, often in parallel on specialized
hardware.

SciML can be seen as part of a bigger change that happening to the way
that researchers conduct scientific exploration. A collection of top researchers
from different domains of science introduced the term fourth paradigm [60] in
2009 which they believe represents a new paradigm for scientific exploration.
A historical timeline of the preceding paradigms for scientific exploration [13]
can be seen in fig. 1.2. The empirical paradigm represents the stage where
predictions was made purely based on observations without any formal the-
ory explaining why the world around us behaved like it does. Next, the
theoretical paradigm represents the stage where the observations were used
to derive mathematical formulas that act as model of reality. Next, the com-
putational paradigm leverages digital computers to simulate the models we
derived, allowing us to gain insight into reality that would be difficult if not
impossible obtain by experimentation alone. Finally, the proposed fourth

9

paradigm leverages larger quantities of data combined with software tools
for deriving knowledge of the system based on the data. Since the ideas was
put forth in 2009 many of the predictions have shown to come true [59]. In
particular, we have seen an increase in the availability of curated datasets
across a wide range of tasks spanning from image classification or protein
folding. The increased availability of dataset has resulted in competition be-
tween research groups in creating the most accurate models within a given
task. At the time of writing, Neural Networks (NNs), the type of model
which is at the core of DL, dominates the state of the art (SOTA) on many
tasks [94]. The exact cause for the explosion in DL popularity is difficult to
pinpoint to a single factor [98]. One factor is that the term NN is used to
refer to an ever expanding family of mathematical structures, each of which
are typically designed to excel at a specific type of task. Additionally, the
software libraries for implementing and training NNs are very mature and
a lot of tutorial style literature exist online on the process of doing so. We
adopt the viewpoint that NNs are not universally superior models, but they
are a good candidate for modeling non-linear functions as evident from their
success.

A natural question to ask is what is the best way to leverage SciML in
the process of engineering complex systems. This question opens up many
other such as: Which types of models exist in SciML literature? What are
the strengths and limitation of each method? What are best practices for
training SciML models for a given type of physical system?

Another practical question is how to best integrate SciML in existing
workflows and simulation environments. SciML is not here to replace first-
principles but rather to extend the set of tools that are available for engineers
and scientists. Being able to integrate SciML models in existing simulation
tools and environments makes it possible to adopt the new formalism incre-
mentally and to combine it with models derived by first-principles. One way
of achieving this is using co-simulation [49], which is a methodology that
makes it possible to simulate a system by composing the simulation of multi-
ple models, each modeling part of the systems behavior. For instance, one of
these models may be derived using first-principles and another model may be
obtained using SciML. A practical question is what the best way to integrate
the SciML workflow and the resulting models in co-simulation tools. This
opens questions such as: How can we make the process of using SciML in
co-simulation as easy as possible? How can we maximize compatibility of
models obtained by using SciML, and existing simulation tools?

Before we formalize the research questions of this thesis, it is useful to ex-
amine the fields that share common concepts with SciML and co-simulation.
Again these are quite diverse, as they originate from different disciplines

10

such as mathematics, physics, computer science and engineering. We cover
the topics in section 1.2 and discuss how the various concepts and terms
relate to other disciplines. Following this section 1.3 formalize the concrete
research questions that this thesis addresses. Finally, section 1.4 describes
the structure of the remaining chapters of the thesis and provides links to
code snippets that can be accessed online as a supplement to the thesis.

1.2 Related Disciplines

The field of SciML is characterized by an influx of ideas from many disci-
plines. Some of these originate from mathematics and physics, others from
computer science and engineering. Many of these disciplines share the same
goals and make use of similar techniques to achieve them. This section
provides an outline of some of the disciplines which SciML builds on. Addi-
tionally, fig. 1.3 shows a graphical map of the various concepts, model types,
algorithms and concepts that are traditionally associated with each field.

1.2.1 Numerical Methods

Numerical methods is a branch of mathematics that is concerned with de-
signing algorithms for computing approximate solutions to continuous prob-
lems [23]. Often these methods are iterative allowing us to increase the
accuracy of the approximation at the cost of computation time. A closely
related discipline is numerical analysis, that deals with proving that certain
properties hold for these methods. Numerical methods have a wealth of ap-
plications such as solving non-linear equations, approximating the values of
definite integrals. The field is closely related to numerical simulation [132]
which employs numerical methods to predict how the state of a dynamical
system develops through time by applying numerical integration. Depending
on the nature of the dynamical system and the required accuracy different
solvers can be used. For instance, special solvers have been developed to solve
stiff problems [53], systems that have discontinuities [47] or to ensure that
physical properties of the simulation are preserved, such as it being conser-
vative [85]. We cover numerical methods in more depth in chapter 2 because
they are important to understanding the concepts from SciML covered in
chapter 3 as those of co-simulation covered in chapter 4.

11

Figure 1.3: Map of topics related to SciML. Inspired by [84].

12

1.2.2 Dynamical Systems

Dynamical systems theory is a branch of mathematics that studies the prop-
erties of dynamical systems [118, 5]. A dynamical system is a mathematical
construct characterized by a function mapping the systems current state to
how the state will evolve within the next infinitesimal increment of time. For
instance the systems state may be the position and velocity of an object,
and the function is defined through a set of ordinary differential equations.
Dynamical systems theory is related to numerical methods in the sense that
we use numerical integration to obtain a simulation of our model. In liter-
ature, a dynamical system are either defined arbitrarily to exhibit certain
phenomena or they may be assumed to be a model of some physical system.
However, even in the latter case there is still little emphasis on the process
for validating that the dynamical system actually behaves like the physical
system. This should be seen in contrast to many of the engineering centric
disciplines where the end goal is obtaining a model that is a close represen-
tation of a physical system. Traditionally, dynamical systems are defined by
hand. However, in recent years that has been an increased interest in de-
veloping methods for deriving dynamical systems from data captured from
physical systems. The authors of [21] to this endeavor as data-driven dynam-
ical systems. However, the idea of fitting parameters of ODEs based on data
is quite old and there is a wealth of literature using different nomenclature for
referring to this. For instance, the authors of [113] refers to it as numerical
data fitting in dynamical systems.

1.2.3 Modeling and Simulation

Modeling and simulation (M&S) is a discipline that applies a systems based
approach for how to create, simulate and validate models of physical sys-
tems [133]. Historically, M&S as a field puts a large emphasis on discrete
event simulation (DEVS) [133] and how models of continuous systems can be
integrated in this formalism. The underlying idea is that models described
by differential equations can be converted into a form that can be used in
DEVS. In other contexts the coupling of models built using different formal-
ism is referred to as multi-paradigm modeling [126]. M&S is also used outside
the context of DEVS to refer to the general idea of modeling a system and
then performing a simulation using the resulting model [68]. For instance,
the modeling of continuous time systems is covered by [25] from an M&S
perspective. Likewise, the algorithms for simulating such systems is covered
by [26], again with an M&S perspective. These aspects of M&S uses differ-
ential equations and the numerical integration schemes developed in the field

13

of numerical methods. Another important part of the M&S framework is the
emphasis on the need to check the validity of a model by comparing it to
the physical system for a range of conditions referred to as an experimental
frame [133, sec. 17.1][33]. In the author’s opinion, the concept of validation
as defined in M&S are very similar to that of SysID as presented in [80,
sec. 16.5]. There is also a body of literature which does not build on the
systems-based modeling framework presented in [133], but rather focus on
the process of DEVS and the software tools that support the formalism [106,
10].

1.2.4 Co-simulation

Co-simulation is a methodology that enables the modeling and simulation of
a system by decomposing it into several black box models [49]. One of the
things that set co-simulation apart from M&S is that models are assumed to
be black boxes that can only communicate at certain time intervals, which
introduces another layer of complexity in implementing a simulator. Because
of the focus on simulating black box models, co-simulation as a field also
deals with the practical issue of how to make models interchangeable between
different simulation software [124]. We cover these concept in greater detail
in chapter 4 since it is an area which we have contributed to as part of this
thesis.

1.2.5 Surrogate Modelling

An important quality of a model is that it should allow us to evaluate the
outcome of an experiment quickly. This is especially important if we are
using it to optimize the design of our system over many trails. Model order
reduction (MOR) [101] is a discipline that originates from the dynamical
system and control community. As the name indicates the goal is to obtain
a lower-order model that approximates a higher-order model that is more
computationally expensive to evaluate. More general is the idea of surrogate
modeling (SM) [69] which does not suppose any that the system we are trying
to reduce is a dynamical system. In recent years, there has been an increased
interest in using NNs as means of doing this dimensionality reduction [29,
86, 135].

1.2.6 Optimization

Mathematical optimization is a discipline concerned with developing algo-
rithms for identifying an ideal choice of parameters for a given problem [28].

14

How good the parameters are is measured by a function referred to as an op-
timization criterion which maps a choice of parameters to a scalar value. An
example of such problem is finding the dimensions that makes a mechanical
part strong while being cheap to manufacture. Here the parameters would be
continuous variables encoding the dimensions and the criterion would be a
function that measures the price of producing the part with the given dimen-
sions. Parameters may either be discrete or continuous resulting in different
optimization problems. Each type of problem requires a different type of op-
timization algorithm. Parameters may also be subject to constraints on the
value they may assume, which must also be considered by the optimization
algorithm.

Optimization algorithms can be divided into two categories based on
whether they use the gradient of the optimization criterion or approximate it
using numerical differences. We refer to the first class of algorithms as being
gradient-based and the second as derivative-free [105, 72]. In the context
of fitting a model’s parameters the first requires that we know the internal
structure, whereas the second relies on probing the output of the model.
There is a close connection between optimization and numerical methods,
in the sense that both use iterative algorithms to successively approximate
the solution. In fact concept like convergence and stability apply are well-
defined concepts in each field. Optimization is a crucial part of ML and other
disciplines that make use of parametric models that are fitted to data.

1.2.7 Machine Learning

Machine Learning (ML) encompasses a broad range of methods for learn-
ing useful patterns from data allowing predictions to be made based on the
uncovered patterns. These methods can broadly be divided into supervised
and unsupervised methods [89, 15]. Supervised learning can be seen as an
optimization problem of finding the set of parameters Θ that make the func-
tion ŷ = f̂(x,Θ) as close to the true function y = f(x), given knowledge of
the desired output for the input variables. Applications of supervised learn-
ing algorithms are regression and classifications problems. In the former we
map the input to some output variable and in the latter we map the input
to a categorical label. Unsupervised learning can be defined as the prob-
lem of learning interesting patterns in data without knowledge of the desired
output. Applications of unsupervised learning algorithms are clustering and
discovering important features in the data [89, sec. 1.3]. Traditionally, many
ML methods originate from statistical methods, however over time the term
has come to encompass any application where we are fitting the parameters
of a model based on some training data [50, 24]. By the general definition

15

disciplines such as Deep learning (DL) [50], System Identification (SysId) [80]
and reinforcement learning [63] are all examples of ML. Supervised learning
is closely connected to the concepts from optimization. What makes a partic-
ular ML algorithm is the mathematical structure we employ and the process
we use for fitting the parameters of the model.

1.2.8 Deep Learning

DL refers to the idea of using NNs as the means to solve complex prob-
lems [50]. We refer to their mathematical structure, that is how their outputs
are produced from their inputs as the architecture of the network. There are
different types of NNs which are more or less suitable for different tasks.
For instance convolutional NN are a popular choice for applications such as
image classification or segmentation where the input is an image [52]. For
modeling dynamical systems two popular approaches such as neural ordi-
nary differential equations (NODEs) and physics-informed neural networks
(PINNs) which we cover in section 3.3.3 and section 3.3.4. The topic of
modeling dynamical systems using NNs is covered in detail by our survey
publication 6.

1.2.9 System Identification and Control

There are other fields concerned with creating mathematical models of phys-
ical systems that predates SciML. For instance SysId, is a well established
field that explicitly builds on the idea of modeling dynamical systems (DS)
using parametric models that are then fitted based on data [80]. Historically,
the objective of SysId is to produce models that can be studied to design
control algorithms for the system. There is a natural desire to choose a type
of model for which there exists simple algorithms for developing a controller.
For instance, linear state-space models [80] are a popular choice, since con-
cepts from linear algebra can help us analyze the stability of the closed-loop
system. Closely related to SysId is the concept of model predictive control
(MPC) [46] which is typically employed when constraints are put on the con-
trol signal or the state of the closed-loop system. In recent years, there has
also been an increased interest in using NNs to model the dynamics of the
system and as well as implementing the controller [36, 14, 3, 77].

16

... ...

SciML in Simulation

SciML in related applications

Tool Integration

!

!

Figure 1.4: Research questions addressed in the work conducted during this
PhD project.

1.3 Research Objective

The goal of this PhD project is to:

Explore how SciML methods can be leveraged in the context of
simulating complex physical systems, in order to reduce the effort
required to obtain accurate models of the system’s components

We have identified four challenges that we believe are central to realize this
goal. Based on each challenge we formulated a research question that the
research conducted during this thesis attempts to answer.
First, the field of SciML draws on inspiration from many disciplines such as
applied mathematics, statistics, physics, engineering and computer science,
which all have their own distinct nomenclatures. This has led to a situation
where practitioners from different fields are referencing the same concepts
and methods using different names, making it difficult to determine which
methods are effective for specific applications. When compared to traditional
ML, SciML addresses some concerns raised by some M&S practitioners when
discussing the use of models which are not derived by first-principles. From
the author’s experience, a commonly voiced concern is the parameters of this
type of model does not represent any meaningful quantity of the physical
system, which puts the reliability of the model into question. By incorpo-
rating prior knowledge of the physical system’s physics and by leveraging
well-founded theory from numerical simulation, SciML methods can be used
to obtain models that have a higher degree of interpretability [107, 35] than
traditional ML models, making them more appealing to use in places where

17

reliability is weighted highly. We define the first challenge as:

SciML in Simulation: How can we make it easier to select and apply
the appropriate SciML methods in the context of modeling and simulating
a physical system? Additionally, how can knowledge of the physical system
be integrated in the modeling process to obtain more accurate and robust
models?

Another practical challenge of using SciML methods with existing simulation
tools is that they are typically designed to make the simulation of a specific
type of physical phenomena as user-friendly as possible, which often comes
at the cost of being able to integrate your own code. Generally speaking,
SciML research is conducted by implementing models in high level scripting
languages using ML libraries. We define the third challenge as:

Tool Integration: How can we make the integration of SciML methods in
existing simulation environments as easy as possible?

One of the main uses of SciML methods in the context of simulation is to
obtain a model of a system’s dynamics based on data captured from the
system. However, the methods used in SciML may also be useful for other
tasks when we are engineering a system, like tuning a controller or detecting
faults.

SciML in related applications: What are other applications of SciML
that are relevant in the engineering of systems beyond their use of obtaining
models of the system’s dynamics?

1.4 Reader’s Guide

This dissertation is split into two parts: The chapters of part I provide a
summary of the research conducted during the PhD project, as well as a
detailed discussion of the extent that the research has addressed the research
questions. We recommend that the chapters are read sequentially since the
concepts from one chapter are built-upon in the following chapter:

• Chapter 2 describes how differential equation (DE) and numerical in-
tegration can be used to model and simulate physical systems

• Chapter 3 describes how SciML can be applied to construct a simulator
for a physical system based on data

• Chapter 4 introduces co-simulation and an industry standard for ex-
changing models

18

SciML in simulation Tool integration

SciML in related applications

Constructing Neural Network
Based Models for Simulating

Dynamical Systems

A Universal Mechanism for
Implementing Functional

Mock-up Units

Portable runtime
environments for Python-

based FMUs: Adding Docker
support to UniFMU

Coupling physical and
machine learning models:

case study of a
single-family house

Energy Prediction under
Changed Demand Conditions:

Robust Machine Learning
Models and Input Feature

Combinations

Rapid Prototyping of Self-
Adaptive-Systems using

Python Functional Mock-up
UnitsIdentification and Control

of Networked Dynamical
Systems: A case study in

HVAC

Neuromancer

Published

Ongoing work

Figure 1.5: Grouping of publication by topic. The arrows indicate depen-
dencies between the work, pointing from the source to a paper that builds
on the idea or uses the tool. Boxes with dotted perimiters indicates work in
progress papers. Publications can be found in part II.

• Chapter 5 provides an assessment of the contribution and outlines fu-
ture work

Part II consists of select publications as shown in fig. 1.5. The order of the
publications are sorted in a way that the author believe would be the most
useful for a new practitioner in the field.

1.4.1 Contributions

To examine the extent at which the research conducted during the PhD
project has addressed the research questions we list the concrete contributions

19

throughout this thesis as shown in contribution 0.

Contribution 0: Example of what a contribution looks like in the thesis

Each contribution can be seen as part of the answer to a specific research
question. A concrete example is the taxonomy of SciML methods represent-
ing contribution 1 helps address the question of how to pick the right type of
SciML method as defined in section 1.3. In general at least one contribution
is derived from each of the selected publications shown in fig. 1.5.

1.4.2 Supplemental Code

An important aspect of understanding the SciML is having an understanding
of how it can be applied in code in practice. To aid the readers understanding
code snippets like the one in listing 1.1 are placed throughout the thesis.
The Python programming language [121] is chosen because it is the defacto
standard for machine learning research. For brevity, we may simplify the
notation and omit statements like importing libraries and calls to plotting
libraries.

1 import numpy as np # we omit imports like this

2 x = np.arange (0.0, 1.0, 0.001)

3 def f(x):

4 return x*2

Listing 1.1: Example of Python code snippet.

As a supplement to the thesis document we have published a series of Jupyter
notebooks [67], which allows the code to be executed through a browser as
shown in fig. 1.6. The notebooks can be hosted locally by downloading
them from the repository1 and setting up a Python interpreter locally. Al-
ternatively the notebooks can be accessed through Google colaboratory [16],
through the following link2

1https://github.com/clegaard/phd_thesis_supplemental_code
2https://githubtocolab.com/clegaard/phd_thesis_supplemental_code/blob/

main/notebooks/notebook.ipynb.

20

https://github.com/clegaard/phd_thesis_supplemental_code
https://githubtocolab.com/clegaard/phd_thesis_supplemental_code/blob/main/notebooks/notebook.ipynb
https://githubtocolab.com/clegaard/phd_thesis_supplemental_code/blob/main/notebooks/notebook.ipynb

Figure 1.6: Notebook running in browser.

21

Chapter 2

Modeling and Simulation

This chapter introduces the most important concepts from numerical simula-
tion used to simulate continuous systems, which we build upon in chapter 3
and chapter 4. The emphasis in this chapter is the simulation of non-linear
Ordinary differential equations (ODEs) since they are comparatively easier
to solve than partial differential equations (PDEs) and understanding their
solution aids in the understanding of how the latter is solved. To aid in
the understanding of how DEs can be used to model a physical system we
introduce the ideal pendulum system which is used as a running example
throughout the thesis. This chapter will not cover the topic of discrete-event
simulation (DES) [133, 10] which is a set of methods used to model systems
that evolve in response to events happening in a discrete or periodic fashion.

2.1 What is a simulation?

The concept of simulation can be defined as the act of imitating the behav-
ior of a physical system by conducting experiments on a model instead of
the physical system. For example, one may simulate how a full sized ship
handles rough seas by placing a scale model in an environment that mimics
the real life condition — but at the scale of the model. In this example the
effort required to build the model is miniscule compared to building a full
sized ship. This allows us to conduct experiments that would be considered
too costly, risky or that are simply infeasible to carry out on the real system.
For instance, we may simulate how the real ship would handle a breached
hull by boring a hole in the scale model. Based on the outcome of the exper-
iment we may optimize the design of the ship to be more robust under the
conditions of the experiment. Not all systems can be simulated effectively
by building a scale model. For instance, it would be difficult to build a scale

22

ModelingPhysical
System

Model
Compilation

Mathematical
Model

SimulationSimulation
Program Trajectory

PDEs

ODEs
Ini

tia
l-v

alu
e

pro
ble

m

Bou
nd

ary
-va

lue

pro
ble

m

Type of System Mathematical
Formalism

Solving

Finite Difference
Finite Element
Finite Volume

Forward-Euler
Radau

Runge-Kutta

SolutionAlgorithm

Figure 2.1: Modeling vs simulation. Inspired by [26, p.8]

model of the planets of the solar system which would be massive enough to
recreate the underlying gravitational forces. Likewise, it would be impossi-
ble to create a scale model that captures the interactions between atoms or
molecules since they do not manifest themselves at the macroscopic scale.
This motivates the use of mathematics to capture the behavior of the phys-
ical world, sometimes referred to as Mathematical modeling [48], which has
been used for hundreds of years. Traditionally, the computations involved
in the simulation of mathematical models had to be carried out on pen and
paper, which is a long and laborious process. Since then the invention of the
digital computer, increases in computational power, and powerful simulation
software has made it feasible to model and simulate increasingly complex
systems. In the context of this thesis we focus on computer simulation, that
is, techniques for defining models and performing simulation using software
running on a digital computer.

The workflow for simulating a system consists of several stages as illus-
trated in fig. 2.1. First, a mathematical model is created by the extracting
the relevant information from the physical system and the formalization of
that information in a mathematical and unambiguous fashion [26, p.8]. The
concrete mathematical formalism we apply depends on the nature of the
system we are trying to model. DEs would be employed to model physical
systems where the state evolves continuously over time according to the laws
of physics. There are several types of DEs, most notably ODEs and PDE.
ODEs are used to model systems for which the evolution is determined by the
system’s current state and a single independent variable — typically time.
Mechanical systems like the pendulum introduced in section 2.2 are a com-
mon example of such system [7]. PDEs can be seen as a generalization of

23

Figure 2.2: Pendulum, characterized by its angle, θ, and its angular veloc-
ity, ω. Source publication 6.

ODEs to multiple independent variables — typically time and spatial coor-
dinates. An example of where PDEs are used extensively is in the modeling
of fluid dynamics [40]. The next task is to encode this information in the
form of a simulation program. The nature of the simulation program and
the model are inherently linked. In some cases off the specialized software
exist that can be used to import equations and parameters of the model, and
in others the simulation program needs to be implemented from scratch for
the particular system. For instance, simulating a system modeled by ODEs
amounts to solving a initial value problem (IVP) which in practice involves
numerical solvers like those described in section 2.3. We refer to the result
of the simulation as the solution or the trajectory because it resembles a set
of points moving through state-space in time. The choice of numerical solver
determines how well this solution approximates the true solution.

2.2 Example: Pendulum

An ideal pendulum, shown in fig. 2.2, refers to a mathematical model of a
pendulum that, unlike its physical counterpart, omits the influence of factors
such as friction in the pivot or bending of the pendulum arm. The state
of this system can be represented by two variables: its angle θ (expressed
in radians), and its angular velocity ω. These variables correspond to a
mathematical description of the system’s state and are referred to as state
variables or the state of the system. The way that a given point in the state-
space evolves over time can be described using DEs. Specifically, for the ideal

24

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Vector Field: Ideal Pendulum

Figure 2.3: Vector field of the ideal pendulum system defined by eq. (2.2)

pendulum, we may use the following ODE:

∂2θ

∂t2
+
g

l
sin θ = 0, (2.1)

where g is the gravitational acceleration, and l is the length of the pendulum
arm. For simplicity, we assume that g = l = 1 in the rest of the thesis.
The equation can be rewritten as two first-order differential equations and
expressed compactly using vector notation as follows:

f(x) =

[
∂ω
∂t
∂θ
∂t

]
=

[
−g

l
sin θ
ω

]
(2.2)

where x is a vector of the system’s state variables. In the context of this
document, we refer to f(x) as the derivative function or as the derivative of
the system. It is worth noting that the fact that ∂θ

∂t
≜ ω happens to be value

of the other state variable is a special case — and not a general characteristic
of ODEs.
It is useful to think of eq. (2.2) as a function defining a vector field that
describes how a given state will evolve over the next infinitesimal increment

25

of time. Evaluating eq. (2.2) in multiple points we can plot the resulting 2-D
vectors as arrows as shown in a stream plot as shown in fig. 2.3. Conceptually,
starting at a given point and following the direction of the arrows gives
us the simulation of the system. A lot about a system’s dynamics can be
learned by inspecting this vector field. First, we see that the arrows shrink
in length going towards the origin which is equivalent to the pendulum bob
moving a low speed. At a physical level this makes sense since those state
correspond to a small angular velocity and an angle close to the rest position
of the pendulum. Secondly, following the arrows close to the middle results
in circular trajectories corresponding to the pendulum oscillating. Finally,
we can observe that for initial conditions (ICs) where the magnitude of the
angular velocity is sufficiently large the trajectories exit the plot either left or
right. From a physical perspective this corresponds to the pendulum spinning
freely. The reason that the vector field described by eq. (2.1), is due to the
fact that sin θ is a periodic function and that it is the only term where the
angle appears. Conventionally we are used to thinking of angles expressed in
radians as wrapping around from −π to π and vice-versa. In cases where we
are only interested in the angle relative to 0 we can think of trajectories as
wrapping around from the right-hand side to the left-hand side. In the case
where we are interested in how far the pendulum in the absolute sense we do
not need to consider wrapping around the values.

2.3 Numerical Solvers

The goal of performing a simulation of a dynamical system is obtaining a
mathematical expression of the solution of a system as a function of time and
the state of the system at the start of the simulation. ODEs like eq. (2.2)
describe how a system evolves at an infinitesimal increment of time, but do
themselves not provide a direct way to compute the solution. The problem
of simulating a dynamical system modeled by a set of ODEs defined by f(·)
for some IC x0, is referred to as IVP which can be formalized as:

∂

∂t
x(t) = f(x(t)), (2.3)

x(t0) = x0 (2.4)

where x(·) is the solution, x : R → Rn and n ∈ N is the dimension of the
system’s state space. The IVP is satisfied by:

x(t) = x(t0) +

∫ t

t0

f(x(τ))dτ (2.5)

26

Midpoint (half-step)

Euler

Midpoint

Figure 2.4: Numerical integration using forward-Euler and midpoint meth-
ods. The midpoint method has a smaller truncation error, but requires two
evaluation of the systems derivative per step.

27

1.0

0.5

0.0

0.5

1.0

 [r
ad

]

FE (step-size = 1e-05)
FE (step-size = 0.1)
MID (step-size = 0.1)

0 2 4 6 8 10 12
t [s]

1.0

0.5

0.0

0.5

1.0

 [r
ad

/s
]

Figure 2.5: Numerical Solutions to eq. (2.3) for the set of ODEs defined by
eq. (2.1). The midpoint method is clearly a closer approximation of the true
solution, which we approximate accurately using forward Euler method (FE)
with a step-size of 1e− 5.

28

In the case of non-linear ODE, there is no general way to derive a closed-form
solution for the integral in eq. (2.5), and we must resort to approximating it
using numerical integration1. The basic idea is to approximate the integral
by a set of difference equations [26]. If the dynamics of the system f and
its derivatives are continuous then the solution x is as well, and can be
approximated up to an arbitrary accuracy using a Taylor Series. For a step
size of h, letting t be the point about which we base the approximation, and
letting t + h be the point which we evaluate the approximation, the Taylor
Series is defined as:

x(t+ h) = x(t) +
∂x(t)

∂t
h+

∂2x(t)

∂t2
h2

2!
+ . . . (2.6)

Plugging in our model f we get:

x(t+ h) = x(t) + f(x(t))h+
∂f(x(t))

∂t

h2

2!
+ . . . (2.7)

If we truncate eq. (2.7) after the linear term we arrive at the simplest inte-
gration scheme known as FE:

x(t+ h) = x(t) + f(x(t))h (2.8)

The basic mechanism of the FE and the closely related midpoint method [26]
is shown in fig. 2.4. One of the limitations of the FE method is that it is only
accurate for a small step-sizes. The consequence is that f must be evaluated
more times which increases the time it takes to simulate the system. The
midpoint method can be seen as a slightly modified version of the FE which
uses an additional function evaluation to provide a more accurate estimation
for a given h. The result of simulating the pendulum system defined by
eq. (2.2) using both methods is shown in fig. 2.4. Despite the fact that the
midpoint method requires two function evaluations per step it makes up for
this by remaining accurate for much larger values of h, leading to a reduction
in the time it takes to run the simulation. Many other solvers exist, many of
which are covered in [100, Chap. 17].

Two causes of errors present in numerical methods are: rounding error
and truncation error [100, Chap. 1]. The total numerical error can be though
of as the sum of those two fig. 2.6, and it can be minimized by picking an
appropriate step-size for the numerical method and the dynamics of the sys-
tem. Rounding error is caused by rounding happening during arithmetic of
floating-point numbers, which can not represent every number exactly. The

1A large collection of ODEs and their closed form solutions are presented in [99]

29

Total error

Truncation error Round-off error

Er
ro

r

Step-size

point of diminishing
return

Figure 2.6: Two sources of error in numerical methods. Truncation error is
introduced by the approximations used in the numerical method. Round-
off error is caused by the fact that floating point numbers can not possibly
represent every number in existence. Decreasing the step-size tends to reduce
the truncation error at the cost of increasing the round-off error.

magnitude of the roundoff error accumulates with increasing number of cal-
culations. Thus, increasing the step-size actually reduces the roundoff error.
Truncation error refers to the error caused by using approximations rather
than their continuous quantities in the calculations of numerical methods.
For instance, numerical solvers like FE implicitly truncates the Taylor series
defined by eq. (2.7) down to its first derivative leading to a large trunca-
tion error. Unlike rounding error, truncation error is largely controlled by
the implementation of the numerical algorithm. For instance, a higher-order
solver like RK45 [100] can be used instead of a first-order solver like FE.
Reducing the step-size also reduces the truncation error because numerical
approximations like eq. (2.7) are more accurate for small step-sizes.
A third type of error is accumulation error [Chap. 2][26]. As the name sug-

30

gests it is caused by the propagation of error from one step to the next in
the solver potentially leading to error accumulating as the simulation pro-
gresses. The impact of this error scales with the length of the simulation
and based on how sensitive the system is to perturbations. For instance, a
chaotic and undamped system would be more sensitive to this type of error
than a damped one such as the one shown in fig. 2.7.

2.4 Modeling error

In real-life a physical pendulum is going to be subject to friction in the pivot
and other physical phenomena that our model does not account for. Suppose
that the physical system was subject to a friction force proportional to the
angular velocity and scaled according to a friction coefficient γ. Thus, the
new system may be defined as

f(x) =

[
∂ω
∂t
∂θ
∂t

]
=

[
−g

l
sin θ − γω
ω

]
. (2.9)

Following the same procedure we may plot the vector field of eq. (2.9) for
γ = 1.0 as shown in fig. 2.7.
Examining the plot we see that arrows are generally attracted to the origin,
which corresponds to the pendulum being at rest. This is aligned with our
understanding that friction should eventually bring the pendulum to rest.
So far we have only considered errors introduced by the algorithms we use
to simulate systems. The fact that our model is not a perfect representation
of reality is another source of error, which we will refer to as modeling error.
Modeling error can be caused by incorrect parameterization of our model,
such as defining the length of the pendulum in eq. (2.1) to be an incorrect
value, or it can be caused by a mismatch between the structure of the model
and the physical system. A contrived example would be if we attempted
to use the frictionless model defined by eq. (2.2) to a physical system that
is subject to friction as defined by eq. (2.9). There are no values for the
models parameters that would make the vector field shown in fig. 2.3 and
fig. 2.7 equal. In a real life setting we do not have access to a mathematical
description of the physical systems, if such a thing even exists. In prac-
tice, we can only hope to model the most important aspects of the physical
system’s behavior. So far we have examined the first-principles approach
where a domain-expert derives the dynamics of the system by applying well
established physical laws and by making simplifying assumptions about the
factors that do and do not affect the system significantly.

31

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Vector Field: Pendulum with friction

Figure 2.7: Vector field of the pendulum with friction system defined by
eq. (2.9). Due to the added friction term the vector field curls towards the
origin, which represents the pendulum coming to rest.

32

Chapter 3

Scientific Machine Learning

SciML [9] is an emerging research field concerned with how ML techniques
can be applied to model physical phenomena like those arising in physics and
engineering. The core idea is that incorporating domain knowledge of the
problem can improve the accuracy and interpretability of the model. Domain
knowledge can be expressed in different ways, such as through physical prin-
ciples, constraints or symmetries. The idea of incorporating prior knowledge
in ML models through various means is not unique and the nomenclature
is not fully established yet. For instance, the following terms all refer to
the same basic idea as SciML: simulation intelligence [73], informed machine
learning [129], physics-informed machine learning [64], Theory-Guided Data
Science [65]. We define SciML by a broad definition that includes all of these
ideas:

A methodology that fuses methods from machine learning and sci-
entific computing with expert knowledge, to solve complex tasks
in natural science and engineering, using a data-driven fashion.

The building blocks that make up SciML methods are depicted in fig. 3.1.
At the lowest level are concepts from optimization, ML, numerical methods
and modeling. The SciML methods described are all derived from this. For
instance what characterizes a method like NODEs [27] is the idea of using a
NN to in place of a hand-defined ODE, which can then be tuned to match
the dynamics of the physical system. Similarly, an application of NODEs is
to construct simulators for physical systems from data captured from them.
In this chapter we focus on the specific application of constructing a sim-
ulator based on data from a physical system. The primary reason for this
is that obtaining a simulator that is differentiable is the first step for other
SciML applications such as designing a controller for the system. First, sec-
tion 3.1 explores how gradient-descent can be used to tune the parameters

33

Numerical MethodsOptimization

Gradient-
Based

Optimziation

Numerical Integration

Collocation Methods

Machine Learning Modeling

Neural
Networks Hardware

Acceleration

Software
Frameworks

ODEs

PDEs

Prior
Knowledge

Automatic
Differentiation

Differentiable
Simulation

Physics-
Informed Neural

Networks

Neural Ordinary
Differential
Equations

Equation
Discovery

Construct simulator
from data

Sc
iM

L
M

et
ho

ds
C

on
ce

pt
s

Parameter
Estimation

A
pp

lic
at

io
ns

Controller DesignFault-Identification Design Optimization

is derived from

is used to

Figure 3.1: SciML methods, their applications and the fields which the meth-
ods a built upon. Applications and methods with dotted lines are only cov-
ered briefly in this chapter.

of a program. Next, we explore the concept of differentiable simulators and
how Automatic differentiation (AD) is used to implement it in section 3.2.
Finally, the reader is strongly encouraged to examine the online workbooks
that can be accessed at https://christianlegaard.com/ml/annsim/.

3.1 Optimization

Modeling a physical system can be framed as an optimization problem where
we are looking for the set of parameters θ that provides the closest fit to
the physical system. How well the model fits measured by a loss function
L : θ → R, which maps a choice of parameters to a scalar value indicating
how good the fit is. The best way to understand this is by looking at a
concrete problem. Consider the following regression 1-D regression problem:

f(x) = ax+ b+ ϵ (3.1)

where ϵ ∼ N (0, 1) and a, b ∈ R. We want to minimize the error between our
prediction and our model which we define as:

f̂(x) = âx+ b̂ (3.2)

34

https://christianlegaard.com/ml/annsim/

A common way to define the error is mean squared error (MSE):

L(θ) = 1

N

N−1∑

i=0

√
(f(xi)− f̂(xi))2 (3.3)

where θ is the parameters of the model, in this case (a, b).
A natural question to ask is how to find the values of a, b that minimize

eq. (3.3).

3.1.1 Gradient-Descent

We can minimize eq. (3.3) by applying derivative-based optimizer. The gra-
dient of a scalar-valued function ∇f is defined as:

∇f(θ) =




∂f
∂θ1

(θ)
...

∂f
∂θn

(θ)


 (3.4)

For instance the gradient of eq. (3.3) is a new function ∇L(θ), that defines a
vector field. In the case of a 2 dimensional parameter space we can visualize
this as shown in fig. 3.2. The simplest derivative-based optimizer is gradient
descent:

θk+1 = θk − γ∇θL(θk) (3.5)

where θk ∈ Θ is the parameters of the model at the k-th step of the optimizer,
Θ being the space of parameters, typically represented as a set of real num-
bers, γ ∈ R is the learning rate, Using eq. (3.5) with θ0 = (a0, b0) = (0.5, 1.0)
we arrive at a close fit as shown in fig. 3.3. Examining fig. 3.4 we see that the
loss decreases monotonically until around 180 iterations where it stabilizes.

3.1.2 Closed-form Solution

Performing the linear regression using eq. (3.3) as optimization criterion has
a closed-form solution. We can augment the observation variable x and the
collect the slope and intercept a, b in a vector Θ such the eq. (3.3) can be
expressed using dot product:

L(θ) =
M−1∑

i=0

N−1∑

j=0

θix
i
j = ||Xθ − Y ||2

= (Xθ − Y)T (Xθ − Y)

= Y TY − Y TXθ − θTXTY + θTXTXθT

(3.6)

35

4 2 0 2 4
a

4

2

0

2

4

b
(a, b)

200

400

600

800

Figure 3.2: Loss landscape obtained by evaluating eq. (3.3) for different
combinations of the models parameters a and b. The red line indicates the
path of the optimizer starting from the guess at the start of the training to
the parameter values at the end of the training.

This is a convex function, which means that the optimum solution is found
where the gradient is zero:

∇θ = −2XTY +XTXθ

Setting the gradient to zero we get:

−2XT θ + 2XTXθ = 0

⇒ XTXθ = XTY

⇒ θ = (XTX)−1XTY

The cost of this is doing a matrix inversion of XTX. For the very simple
example of linear regression we were able to derive a closed-form solution
to optimize eq. (3.3). Had there been any non-linear terms in eq. (3.6) this
would not have been possible.

36

3 2 1 0 1 2 3
x

1

0

1

2

3

4

5

f(x
)

f(x)
f(x)

Figure 3.3: Data sampled from eq. (3.1) for x ∈ [−π, π], a = 1, b = 2

3.1.3 Automatic Differentiation

Using AD allow us to implement a differentiable simulator by writing the
code that performs the evaluation of the gradients and numerical integration
as discussed in chapter 2. In other words AD makes it easier to optimize
the parameters of models that relies on numerical integration. Without the
ability to differentiate a simulation, the only alternative to fitting a mod-
els parameters are gradient-free optimization algorithms like those typically
employed in reinforcement learning [63]. The motivation for using gradient-
based methods is that they may lead to faster convergence [119]
Much confusion arises from the idea of differentiating computer programs
and from the fact that multiple techniques exist for doing so. For ease of
understanding we limit ourselves to the task of differentiating the simple
univariate function defined by eq. (3.7).

f(x) = cos(sin x) (3.7)

We examine the connection between differentiating a function like eq. (3.7)
and the process of training a models parameters a model in section 3.1. For
the curious reader, we refer to the survey [12] which provides a detailed
description and comparison of the techniques.

Numerical differentiation is a finite difference approximation of a func-
tions gradient obtained by evaluating the function in a set of neighboring
sample points in addition to the original point. The simplest scheme is a

37

0 200 400 600 800 1000
epoch

101

102

103

lo
ss

(e
po

ch
)

Figure 3.4

forward difference - inspired by the definition of the limit. For a multivariate
function f : RN → R, the gradient is approximated by

∂f(x)

∂xi
≈ f(x+ hei)− f(x)

h

where ei is the i-th unit vector and h > 0 is a sufficiently small step size. The
benefit of this approach is that it is simple to implement. For a univariate
function like eq. (3.7) it can be implemented as shown in listing 3.1.

1 h = 0.001

2 x = 1.0

3 z0 = cos(sin(x))

4 z1 = cos(sin(x + h))

5 dzdx = (z1 - z0) / h

6 print(dzdx) # -0.40264575946546977

Listing 3.1: Numerical differentiation

An obvious disadvantage of this approach is that it requires an additional
function evaluation for each variable that we wish to evaluate the partial
derivative for. This is especially problematic if the derivatives are used
as a means to train models with a large number of parameters which are
typical of NNs. A less obvious disadvantage is that the approximation are
ill-conditioned and unstable for most functions [12].

Symbolic differentiation is an approach where symbolic expressions are
manipulated to obtain symbolic expressions of the derivatives. The process

38

Symbolic
Differentiation

of the Closed-form

Numerical
Differentiation

Automatic
Differentiation

Coding

Manual
Differentiation

Coding

def f(x):
 for i in range(1, 3):
 x = 4 * x(1 - x)
 return x

def f(x):
 return 64*x*(1-x)*((1-2*x)**2)*(1-8*x*8*x*x)**2

or, in closed-form

def dfdx(x):
 return 128 * x * (1 - x) * (-8 + 16 * x)
 * ((1 - 2 * x) ** 2) * (1 - 8 * x + 8 * x * x)
 + 64 * (1 - x) * ((1 - 2 * x) ** 2) * ((1
 - 8 * x + 8 * x * x) ** 2) - (64 * x*(1 -
 2 * x) ** 2) * (1 - 8 * x + 8 * x * x) ** 2
 - 256 * x * (1 - x) * (1 - 2 * x) * (1 - 8 * x
 + 8 * x * x) ** 2)

dfdx(x):
h = 0.000001
return (f(x+h)-f(x))/h

Approximate

Exact

def dfdx(x):
 x, dx = (x,1)
 for i in range(1,3):
 (x, dx) = (4*x*(1-x),4*dx-8*x*dx)
 return (x,dx)

Exact

Figure 3.5: Different approaches for differentiating functions. Reproduction
based on [12, fig. 2]

39

is similar to that of differentiating a function by hand by applying known
rules and transformations, the only difference being that we use software to
automate the process. In most programming languages symbolic differenti-
ation is implemented as external libraries defining symbolic counterpart of
mathematical operators. Using SymPy [87] we can differentiate the eq. (3.7)
as shown in listing 3.2.

1 x = symbols("x")

2 y = sin(x)

3 z = cos(y)

4 dzdx = diff(z, x)

5 print(dzdx) # -sin(sin(x))*cos(x)

6 print(dzdx.subs(x, 1.0)) # -0.402862443052853

Listing 3.2: Symbolic differentiation in SymPy

A benefit of symbolic differentiation is that they can sometimes valuable
insight into the problem such as analytical solutions to problems. The draw-
backs of symbolic differentiation as a means to evaluate derivatives is that
the expression often explodes in size and that they may take a long time to
evaluate.

AD [127, 12] refers to a set of techniques used obtain derivatives of pro-
grams by altering its execution. There are multiple ways of tapping into the
execution, each with their own set of pros and cons. Dynamic programming
languages like Python provide a great deal of flexibility when it comes to
implementing AD through external libraries.

Figure 3.6: Dynamic computation graph corresponding to eq. (3.7).

The premise idea of AD is that a program can be differentiated by break-
ing it down to a sequence of elementary operations, for which the derivative is
known. Using the chain rule of differentiation the derivative of the composi-
tion of two differentiable function functions can be determined. Frameworks
such as PyTorch [95], Jax [18] and TensorFlow [1] dynamically builds up a
trace of the program during execution. For instance, running the program

40

shown in listing 3.3 results in the computation graph shown in fig. 3.6. They
do so by defining a special array type, referred to as a tensor in PyTorch,
that records the operations applied to it. For instance evaluating the sine
of x creates a new node in the graph y which is a child of x. Similarly,
evaluating the cosine of y creates yet another node z which is a child of y.
Calling the backward method on z computes the partial derivative of z and
populates the grad attribute of all leaf nodes. For instance, accessing x.grad
gives us the partial derivative of z with respect to x. In the context of ML
leaf nodes are either inputs to or parameters of the model and the tensor
for which we would be differentiating would be the output of a loss function.
There are two modes of AD forward mode and reverse mode, also referred to
as back-propagation[12]. Both provide us with the ability to compute partial
derivatives, but depending on the number of leaf nodes one may be faster to
evaluate [12, sec. 4.1].

1 # imperative

2 x = torch.ones([], requires_grad=True)

3 y = torch.sin(x)

4 z = torch.cos(y)

5 z.backward ()

6 print(x.grad) # tensor (-0.4029)

7

8 # functional

9 def h(x):

10 return torch.cos(torch.sin(x))

11

12 print(grad(h)(x)) # tensor (-0.4029)

Listing 3.3: Differentiation in PyTorch using imperative and functional API.

3.2 Differentiable Simulation

Differentiable Programming (DP) is a programming paradigm that leverages
AD to obtain derivatives of computer programs. This is extremely useful
for data-driven modeling since it provides the derivatives necessary for op-
timization of a model’s parameters, without having derive these by hand.
More specific to the topic of modeling and simulation is the concept of dif-
ferentiable simulators or differentiable physics [30, 31, 61]. The idea is that
a simulator can be implemented in a way that we can train parameters of a
model or those of a controller using gradient-based optimization as depicted
in fig. 3.7.

In some cases we might have prior knowledge of a system’s dynamics in
the sense that we already know the structure of the equations, yet we are

41

Solver

Loss Function

Controller

Dynamics

ODEs

Neural
Network

Midpoint

Forward
EulerPID

Neural
Network

Prediction error

Control objective

Figure 3.7: Differentiable Simulator. The dynamics of the system is modeled
by f , which could be a set of hand-derived ODEs or a NN. A numerical solver
simulates the system by evaluating f and integrating it with the current state.
The loss function maps the result of the simulation to a scalar value. The
choice of loss function and which parameters we differentiate with respect
to determines the outcome of the optimization. For instance, differentiating
the prediction error with respect to the parameters of f can be thought of as
asking: ”How can I tweak the parameters to make the simulator and physical
system as close as possible?”.

42

missing concrete values for parameters. For instance consider the parameters
of the Pendulum system introduced in section 2.2. The dynamics of the
system are defined by eq. (2.2) which has two parameters g and l which
model the influence of the gravity and the pendulum arms length on the
system. Suppose that we knew the structure but only had rough estimates
of g and l which we denote ĝ and l̂. One way to identify them is to treat this
as an optimization problem of finding a set of parameters that minimize the
difference between the true system and our model. We may define the loss
to be the MSE between the predicted trajectory x̂ ∈ RM×N where M is the
dimension of the state-space and N is the number of steps in the trajectory:

L(θ) = 1

MN

M∑

i=0

N∑

j=0

√
(xij − x̂ij)2 (3.8)

What makes this scenario special in the context of dynamical systems is
that the prediction at a given time xk depends on the prediction at the
previous time xk−1 and so forth. An implication of this is that the trajectory
of produced by the model is uniquely determined by its parameters Θ and
the IC x0. The exact expression depends on which integration scheme we
employ. For instance, using eq. (2.8) we may write up the first three steps of
trajectory:

x1 = x0 + hf(x0)

x2 = x1 + hf(x1) = x0 + hf(x0) + hf(x0 + hf(x0))

x3 = x2 + hf(x2) = x0 + hf(x0) + hf(x0 + hf(x0))

+ hf(x0 + hf(x0) + hf(x0 + hf(x0)))

During training the number of steps we simulate for is tied to the length
of the trajectories from the true system. Suppose, the trajectories from the
true system span an interval of 10 seconds and are sampled every second. In
this case we would need to simulate the model for a similar time interval and
make sure that the time instances where they are sampled are aligned. Based
on personal experience, the longer the trajectories used for training are, the
more difficult it becomes to train the model. A possible explanation is that
the error committed at one step due to an incorrect choice of parameters are
propagated to the next step and so forth. In the case where the true system
is synthetic, i.e. we defined it ourselves, it is easy to control the length of
the trajectories and which initial conditions to simulate for. If the data is
captured from a physical system we can split long trajectories into several
smaller ones, increasing the number of trajectories but reducing their length.

43

0 2 4 6 8 10 12
t[s]

0.4

0.2

0.0

0.2

0.4
x(

t)

Pendulum g=0.79,l=0.79

Figure 3.8: Simulation of the true system defined by eq. (2.2) with g = l = 1.0
and the model. Only the ratio between the estimated parameters matter
because they appear as a fraction as seen in eq. (2.2).

On the extreme end we end up with trajectories that only contain the initial
condition and one step ahead in time.

We can apply these ideas to estimate the values of g and l in eq. (2.2)
based on trajectories generated by simulating the true system. In this case
the model class of the true system and the model class of a model is the
same, which means that it is possible to get a perfect fit assuming that our
optimizer is able to find the correct parameters. We sample initial conditions
in a grid defined by θ0 ∈ [−π, π] and ω0 ∈ [−π, π] with a resolution of 0.1
and simulate one step ahead the system using eq. (2.8) and a step size of
0.001 seconds. Minimizing eq. (3.8) for using eq. (3.5) with a learning rate of
0.001 we arrive at the results shown in fig. 3.8 and associated losses shown in
fig. 3.9. Examining the plots we see that the estimated values for the systems
parameters are ĝ = 0.79 and l̂ = 0.79. Despite them being different from
the parameters of the true system, the ratio of the fraction in which they
appear in eq. (2.2) is the same. This is an example where there is no single
combination of parameters that minimizes the problem.

3.3 Neural Network-based models

NNs are a family of parametric models which have proven effective at solving
a large variety of tasks. Characteristic of NNs that they implement a non-

44

0 2000 4000 6000 8000 10000
epoch

10 5

10 4

10 3

10 2
lo

ss
(e

po
ch

)

Figure 3.9: Loss resulting from minimizing eq. (3.8) on the pendulum exam-
ple

linear map from their inputs to their outputs which is trained by tuning the
parameters of the network.

hidden layer(s)input layer output layer

Figure 3.10: Multi-layer perceptron. Source [76]

3.3.1 Multi-Layer Perceptron

One type of network is a Multi-layer perceptron (MLP) [50] or feedforward
NN, like the one shown in fig. 3.10. A MLP has a single input layer one or
more hidden layers and an output layer. Each layer consists of a number of

45

neurons which pass on information to neurons in the next layer, hence the
feedforward in the name. The number of neurons in the input and output
layer is dictated by the application we wish to use the NN in. The number of
hidden layers and the number of neurons in each of the hidden layers are so-
called hyperparameters of the network. The hyperparameters of the network
influences the network’s capacity to model complex functions. Generally the
larger the number of hidden layers and neurons the more complex mappings
can be realized. Increasing the number of neurons also results in an increased
number of parameters that must be tuned during training.

The parameters of a MLP are a set of weights and biases which we denote
w and b respectively. A MLP can be broken down into multiple perceptrons,
each corresponding to a circle with incoming edges shown in fig. 3.10. The
output of a perceptron is a weighted sum of its inputs, which is offset by a
bias and then finally passed through a non-linear function referred to as an
activation function. Formally this can be defined as eq. (3.9).

ỹ = ψ(
n∑

i=1

wixi + b) (3.9)

where w is the weights, b are the biases, x is the input and ψ : R → R is the
activation function. The role of the activation function is to introduce non-
linearity into the model. The MLP itself is a composition of perceptrons that
together form a continuous function from the networks input and parameters
to its outputs. MLPs are typically trained using supervised learning by
defining a loss function which is itself a continuous function of its inputs.
The result of this is that the loss function can be differentiated with respect
to its parameters which enables us to use gradient-descent based optimization
to tune the parameters like described earlier in the chapter.

The connection between an MLP and the process of modeling a dynam-
ical system is not immediately clear. An MLP is a building block we can
use to construct more complex models of dynamical systems. There are
different ways to do this, some of which leverage concepts form numerical
simulation and others which employ a strategy more reminiscent of colloca-
tion methods. Section 3.3.2 introduces a basic taxonomy of the methods.
Next, Section 3.3.3, describes how numerical integration can be used with
MLPs to simulate dynamical systems. Following this, Section 3.3.4 describe
a different approach where an MLP is trained to approximate the solution
of a set of ODEs.

46

3.3.2 Taxonomy

A central challenge to understanding the NN models in SciML literature is
that it is a relatively new field and that it draws in ideas and terms from
many domains such as SysId, DL, ML and many more. Additionally, the type
of models applied are typically tailored to solve a specific problem leveraging
prior knowledge of the particular physical phenomenon. Often the core idea
of an approach being misunderstood or it being oversold as something it is
simply not. A concrete example is the confusion around the term PINN [103],
in the authors experience it can mean two very different things, which has
also been noted in [66, section 1.1.5]:

• Any type of NN-based model that incorporates prior knowledge of
physics

• A specific type of model that we describe in section 3.3.4 that approx-
imates the solution of DEs in way similar to collocation methods.

The fact that this misunderstanding is present in current literature indicate
that there are still a lot of confusion around the nomenclature and how the
models are implemented in practice. Our survey publication 6 introduces
a basic taxonomy describing the two main types of models. It also covers
several other topics and variations of the models as shown in fig. 3.11.

Contribution 1: Define a taxonomy for models encountered in SciML lit-
erature.

Another challenge of understanding the literature is that there is rarely
any emphasis put on how the model is implemented. In addition to the ”block
diagram”-inspired figures like fig. 3.12 and fig. 3.17, we provide reference
implementations for many of the class of models identified in the survey.
The code for all the models can be accessed from this GitHub repository1.

Contribution 2: Provide implementation of the models described by the
taxonomy

3.3.3 Neural Ordinary Differential Equations

The idea of combining numerical integration and NNs was recently popu-
larized in [27] which refers to the approach as NODEs. However, the idea
of using NNs in a recurrent fashion to model dynamical systems dates back
at least 3 decades [112, 115, 44]. In the framework of a differentiable sim-
ulator shown in fig. 3.7, NODEs are simply characterized by their use of a

1https://github.com/clegaard/deep_learning_for_dynamical_systems

47

https://github.com/clegaard/deep_learning_for_dynamical_systems

Survey

StructureBackground

(Sec. 2)

Differential Equations
(Sec. 2.1)

Neural Networks
(Sec. 2.2)

Direct-Solution
Models

(Sec. 3)

Hidden Physics
Networks

(Sec. 3.5)

Time-Stepper
Models

(Sec. 4)

Physics Informed
Neural Networks

(Sec. 3.1-4)
 Integration Schemes

(Sec. 4.2)

Neural ODEs

(Sec. 4.2.1-4.2.4)

Network Architecture
(Sec. 4.4)

External Input
(Sec. 4.3)

Neural State-
Space Models

(Sec. 4.3.1)

Neural ODEs
with input

(Sec. 4.3.2-3)

Graph Neural
Networks
(Sec. 4.4.3)

Hamiltonian/
Lagrangian NN

(Sec 4.4.1)

Deep Potential
NNs

(Sec. 4.4.2)

Uncertainty
(Sec. 4.5)

Deep Markov
Models

(Sec. 4.5.1)

Baysian
Neural ODEs

(Sec. 4.5.3)

Neural
SDEs

(Sec. 4.5.4)

Model Taxonomy

(Sec. 2.3)
 Latent Neural
ODEs

(Sec. 4.5.2)

Figure 3.11: A mind map of the topics and model types covered in publica-
tion 6. Note that the section numbers match those of the original publication
and not those of this thesis. Source publication 6

NN to approximate the physical system’s dynamics. The process for tuning
the NN’s parameters is the same as that of tuning the coefficients of the
ODEs described in section 3.2. However, one difference is that the tuned
parameters of the NN do not hold any inherent physical meaning — they
were simply the choice that minimized the loss function. This is in contrast
to the scenario where described in fig. 3.8, where the training resulted in an
estimate of g, l.

In publication 6 we applied this type of model to model the ideal pen-
dulum as seen in fig. 3.13. From our experimentation we found that the
explicitly encoding the use of numerical integration in the models greatly
increased the accuracy of the models. Comparing fig. 3.13 and fig. 3.14, we
see that the model using RK45 for numerical integration has a much higher
accuracy than the one that uses the NN to directly map from the current
state to the next.

Contribution 3: Demonstrate how numerical integration can be used in
conjunction with NNs to model and simulate a physical system.

Another advantage of using a numerical integration scheme is that the model
can be simulated for a different step-size after training. The procedure for
training the models and pseudocode are provided in publication 6.

48

... ...

Figure 3.12: NODEs. Starting from a given initial condition x0, the next
state of the system x̃i+1, is obtained by feeding the current state x̃i into the
derivative network N , producing a derivative that is integrated using an in-
tegration scheme

∫
. The loss L is evaluated by comparing the predicted with

the training trajectory. The process can be repeated for multiple trajectories
to improve the generalization of the derivative network. Source publication 6.

3.3.4 Physics-Informed Neural Networks

PINNs [103] is another type of model that is popular in SciML literature
today. Like the models introduced previously in the chapter they can be
used to build simulators for physical systems in a data-driven fashion. Unlike
the methods introduced earlier in this chapter PINNs do not use numerical
integration. Rather they learn a mapping from the independent variables
of DE to the solution at those coordinates. The approach used by PINNs
for approximating the solution is similar to collocation methods [110] where
a function is fitted through a set of collocation points. What makes PINNs
special is that they incorporate clever use of AD and terms in the loss function
to penalize inconsistency with physics laws. In publication 6 we demonstrated
how a PINN can be used to obtain a simulation for the pendulum system
defined by eq. (2.2). Additionally, we performed ablation studies to see how
various aspect of the method contribute to its effectiveness.

The first experiment was to train the MLP by minimizing the error for a
set of collocation points as shown in fig. 3.15. This reveals two issues: First,
the predictions are only accurate in the collocation points and not for any
other value of t. Second, ω is supposed to represent the derivative of θ —
which is clearly not the case for the model’s predictions. This outcome is not
surprising, since there will be many functions that fit perfectly through the
collocation points without necessarily being a solution to the ODE.

The second experiment modified the model slightly such that the MLP
only had one output θ. Instead, AD was used to differentiate the angle θ
with respect to t giving us the velocity which is per definition ω. As shown
in fig. 3.16 this leads to a much higher accuracy for values of t outside the

49

...

Solver

initial condition
solver method
step size
...
error tolerance 0.50

0.25

0.00

0.25

0.50

(t)

0 2 4 6 8 10 12
t

0.50

0.25

0.00

0.25

0.50

(t)

true
predicted

Figure 3.13: NODEs applied to learn the dynamics of the ideal pendulum
system defined by eq. (2.2). The RK45 method was used for numerical
integration. Source publication 6.

collocation points. By using AD this way we are enforcing that the value
and the derivative of the function should go through the collocation points.

The third experiment introduced the ”physics-informed” aspect to the
model by adding a term to the loss function that penalizes the model for
making predictions that do not satisfy eq. (2.1). The new term can be eval-
uated even without knowing the solution at those points allowing us to eval-
uate it for any t. It should be emphasized that the collocation points are
still needed for training since eq. (2.1) has a trivial solution which θ(t) = 0.
By combining the two terms we find a function that: a) fits through the
collocation points, b) its derivative fits through the collocation points, c) the
solution produced by evaluating the function is consistent with the physical
laws governing the system.

The fourth experiment, modifed the model based on the concept of ”hid-
den physics” presented in [104] to infer a hidden state of the system that
can not be observed directly. To demonstrate this we considered a pendulum
system where the length of the pendulum arm l could change as a function of
time as shown in fig. 3.18. The pendulum arm’s length, l, was introduced as
another output of MLP. Then the equation-based loss term from the PINN
is modified to use the estimate of l.

One of the main limitations of PINN as a means to simulate ODEs is
that they need to be re-trained every time the system needs to be simulated
for a new IC. Likewise, the simulation can not be expected to be accurate
beyond the time instances they have been trained for, which is not a problem
for methods like NODE. The main appeal of PINNs shines through when
solving PDEs which generally requires more complex algorithms than ODEs.
One of the challenges of applying PINNs is that optimizing there parameters

50

...
1.0

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

1.0

0.5

0.0

0.5

(t)

true
predicted

Figure 3.14: NODEs applied to learn the dynamics of the ideal pendulum
system defined by eq. (2.2). To demonstrate the importance of explicitly
encoding numerical integration the network was trained to map the current
state to the next state. Source publication 6.

is difficult [130, 131]. Overcoming these challenges would make PINNs very
attractive as a means for modeling physical systems.

Contribution 4: Demonstrate how the significance of using AD and physics
based regularization in PINNs

3.4 Model-based Fault Identification

Characteristic for Cyber-Physical Systems (CPSs) is the that they are influ-
enced by the environment they operate in. For instance consider an agricul-
tural robot like the one shown in fig. 3.20. The properties of the soil which it
is driving may change if it starts raining or if it drives over a patch where wa-
ter accumulates. Likewise, parts like the wheel bearings may get worn down
and eventually seize. Fault identification [45] refers to a set of techniques for
identifying and locating the source of faults in the system.

One approach, referred to as signal-based by [45], is to look at the trace
of the for abnormalities, like extreme peaks or sudden changes in values. It is
also possible to train a model to identify faults that are not easy to formalize
into rules by a human. For instance a recurrent neural network such as a
gated recurrence unit (GRU) to emit labels indicating specific faults given
a time-series generated from a system exhibiting that fault. The authors
of [8] provides a benchmark of various techniques for time-series classification.
Applying this method does not require a model of the system but instead
relies on labeled data.

51

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

1.0

0.5

0.0

0.5

(t)
true
predicted
numerical
collocation point

Figure 3.15: Using a MLP with two outputs to approximate the solution at
t. The network is trained to minimize the error in the collocation points.
This results in a solution that is only accurate in those specific points and
not elsewhere. Additionally, the predicted value ω̃ does not represent the
derivative of the predicted variable θ̃. Source publication 6.

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

0.5

0.0

0.5

(t)

true
predicted
numerical
collocation point

Figure 3.16: Similar approach to fig. 3.15 but the velocity is obtained by
differentiating the output θ with respect to t to obtain which per definition
gives the angular velocity ω.

52

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

0.5

0.0

0.5
(t)

true
predicted
numerical
collocation point

Figure 3.17: Physics-informed neural network. Similar to fig. 3.16 but in-
corporates eq. (2.1) in the loss function as a means of penalizing physically
inconsistent solutions.

0.5
0.0
0.5

(t)

0.5

0.0

0.5

(t) true
predicted
collocation point

0 2 4 6 8 10 12
t

1

2

3

l(t
)

Figure 3.18: Hidden-physics NN. Similar to fig. 3.17 but the model is modified
to predict the length of the pendulum arm which varies over time for sake of
demonstration.

53

Another approach, referred to as model-based by [45], detects faults by
comparing the behavior of the real system with that of a model to identify
deviations between the two. The model can be derived by a human using
first-principles or a model can be fitted using data to obtain a surrogate of
the true system’s behavior. Being able to easily estimate parameters on the
fly based on observed data makes it possible to not only detect that a fault
has occurred, but also to find the set of parameters that would explain the
observed behavior. In publication 8 we used this approach to detect when the
robot’s dynamics deviated and to estimate the parameters that best explain
this change which form contribution 5. In the specific scenario we changed
the tires’ cornering stiffness mid-simulation to mimic a scenario where the
robot starts slipping. Specifically, we defined a tracking model which is a
simplified version of the true system which was simulated in parallel with
the true system which we referred to as the reference as shown in fig. 3.19.
Whenever, the two models deviated sufficiently the tracking model would
go back to a point in time when the two trajectories were still close and
simulate forward in time using a slightly updated estimate for the cornering
stiffness. This process was carried out iteratively until the difference between
the reference and tracking model was below a certain tolerance. There is a
clear resemblance to the optimal control problem known from MPC. In MPC
we are trying to find a sequence of control actions to achieve the desired
trajectory, whereas in our case we are trying to fit a parameter such that we
achieve the desired trajectory.

Contribution 5: Demonstrate how model-based parameter estimation can
be used to detect anomalies in a self-adaptive system.

At the time, the goal of our work was to demonstrate the feasibility
of designing self-adaptive systems [82] using co-simulation, which is a topic
we cover in chapter 4. As such, we were satisfied with showing that the
parameter estimation was able to identify when the parameters of the true
system changed with a sufficient degree of accuracy. By defining nominal
ranges for each of the estimated parameters it is straight forward to identify
faults. However, the real value comes in being able to adapt to changes in
one’s environment and changes to characteristics of the true system. For
instance, if the robot can identify that it is slipping, it can compensate for
this by reducing the torque of the wheels or apply a different steering angle.
One way to incorporate this behavior in the controller is using a rule-based
approach. For instance the controller might reduce its speed by a half if the
cornering stiffness falls below a certain threshold. This approach is simple
but not optimal in the sense of maximizing the speed at which the robot
can move around an area. A more sophisticated approach is to apply MPC

54

Figure 3.19: Tracking simulator. The term reference represents the state of
the true system. The tracking model represents a model of the true system
that we compare with the reference to detect deviations. Source publication 8

and continuously update the models parameters to the ones estimated by the
system. In the MPC community this is referred to as self-tuning predictive
control [81].

Our implementation of the model did not employ the AD techniques
introduced in section 3.1.3. It would be interesting to implement the model in
a framework that allows end-to-end differentiation of the model through the
numerical solver. This would allow for more robust and efficient estimation
of the systems parameters since we avoid issues arising from using finite-
differences. It would also be possible to formulate an objective function that
measures the performance of the system, which can then be differentiated
with respect to design parameters, such as the width of the robot, allowing
us to optimize the design through simulation. This idea is sometimes referred
to as differentiable physics [31, 30] and have gained a lot of traction in the
DL control community as an alternative to using reinforcement learning [63]
which does not assume that our simulation is differentiable.

3.5 Simulation and Control

This section represents ongoing work on applying SciML as a
means to design controllers for heating and ventilation systems.
We have only completed the first stage of this process which is
obtaining a differentiable simulator for the system.
In 2021 the operation of buildings accounted for 30% of global final energy
consumption and 27% of total energy sector emissions [22]. Of the total
amount of energy, almost 16% are spent on cooling the buildings [117]. Ad-

55

Figure 3.20: Schematic and mathematical model of Robotti robot. Source
publication 8.

56

dressing this issue requires that (i) energy is generated in a clean and climate
friendly way, (ii) that the produced energy is utilized optimally to achieve the
desired objective. We focus our effort on the latter. For a Heating, ventila-
tion, and air conditioning (HVAC) system, this amounts to finding a control
algorithm that maximizes comfort while minimizing the used to achieve the
desired temperature. HVAC provides some unique challenges compared to
other types of process control [2]:

• Complexity: The dynamics are non-linear

• Disturbances: Ambient temperature and solar radiation varies through-
out the day and with the weather

• Measurement Uncertainty: Temperature sensors may only measure a
change in temperature a long time after it has occurred, and it may
not be representative of the rest of the room.

• Conflicting Control Loops: Achieving the desired temperature in one
zone may be counterproductive to achieving the desired temperature
in a neighboring room

Traditional control methods such as ON/OFF or PID[80] controllers are of-
ten favored for HVAC systems because of their simplicity [2]. However, they
are far from optimal since they can’t anticipate that the temperature change
is delayed or how external factors may influence the dynamics of the building.
In recent years, there has been an increased interest in applying model pre-
dictive control (MPC) to address some of the issues that arise from simpler
controllers [2]. Applied to HVAC the core idea of MPC is that by modeling
how the buildings’ temperature changes as a function of a control action and
external disturbances, it becomes possible to anticipate what control action
to apply now such that temperature becomes comfortable - while minimizing
the energy to produce the action. The prerequisites for implementing MPC
is: (i) a mathematical model must be formalized with captures the dynamics
of the system accurately, (ii) a control algorithm must be derived which can
infer the optimal control input for the system.

3.5.1 Workflow

To develop optimal control policies, we apply a multi-stage workflow, as seen
in fig. 3.21. The first step is to obtain trajectories of the system we want
to optimize. We use synthetic data from an RC-model with known coef-
ficients, and known dynamics for both the simple control actions and the

57

Model building dynamics
and influence of existing controller

Acquire data from simulation of building
or measurements from a real building

Design new controller

Controller

Validate performance of new controller

Figure 3.21: Workflow for implementing optimal control using a data driven
approach.1. Dataset describing evolution of the building is captured by sen-
sors in a real life building or obtained through a simulation. 2. A parametric
model such as a NODE or RC-network is trained to approximate the dynam-
ics of the building, including the influence of control signals. 3. A controller
is designed to replace the existing non-optimal controller, 4. The results are
validated by taking the new controller and plugging it into the original sys-
tem. For simulations this step is straight forward, but for physical buildings
it would require that the new controller be installed, and the building be
made to operate according to it.

external perturbations, because it allows us to generate an arbitrary num-
ber of training trajectories and to conveniently validate the controllers we
develop. The second step in the workflow is to develop a parametric model
(RC-model/NODE) of the system that closely approximates the synthetic
trajectories. Given the parametric model, we design a new controller that
optimizes the operation of the system such that it minimizes an objective
function. As the final step, we use the controller we designed based on the
parametric model in the synthetic simulation model to validate its perfor-
mance.

To implement MPC-based optimal control, we use data-driven models
to learn the dynamics of the system and to obtain a controller capable of
performing optimal control of the system. How we choose to model the
system and the controller can be characterized by:

• What mathematical structure do we use to model the dynamics

• What training algorithm is used to tune the model to the data

58

• What type of control algorithm we apply

• What criterion is the control algorithm trying to optimize for

The implication of this is that we can construct models in different ways.. The
concrete choice and their implications for the performance is best studied on
a building by building basis, as they incorporate insight that is not general to
all buildings. The rest of the section introduces the buildings and numerical
experiments performed on each of these.

Contribution 6: Demonstrate the first stage of a workflow for identifying
a buildings thermal dynamics from temperature measurements, enabling
gradient-based optimization of the control-policy of the building’s HVAC
system

3.5.2 Physical System

The first example is a synthetic dataset generated from the building in fig. 3.23.
The building has 6 zones, each characterized by a temperature xi ∈ R. The
building is modeled by an RC-network 2 [83, 108] as shown in fig. 3.22. The
dynamics of the building are defined by eq. (3.10).

xi
∂t

(t, R, C) =
M∑

j=1

xj(t)− xi(t)

CiRij

+
ui(t)

Ci

(3.10)

where M is the number of zones, C ∈ RM is a vector of each zone’s specific
heat capacity, Rij ∈ RM×M is a matrix defining the thermal resistance be-
tween the zones, and u : R → RN is a vector valued function defining the heat
flux of the HVAC system to each zone. An HVAC system is connected to each
individual zone and is modeled by an on-off controller defined by eq. (3.11).
For simplicity, we assume that the set point is constant throughout the entire
duration of simulation.

ui(t) = c(xi(t)) =

{
1.0, if xi(t) ≤ x∗i (t)

0, otherwise
(3.11)

The procedure for simulating the true system is depicted in fig. 3.24.
First, we sample L initial conditions X0 ∈ L×M corresponding to zone
temperatures at the start of an experiment from a uniform distribution. Next,

2Network referring to the zones being connected in a graph-like structure in the model,
not the use of NNs.

59

N5

N1

N2

N3N4

Weather

HVAC

Figure 3.22: RC-model of the building.

we use a numerical solver to simulate the system N steps ahead in time for
every each initial condition resulting in a tensor X̄ ∈ RL×M×N . This tensor
is the training data which we will use for identifying the dynamics of the
building and HVAC system.

3.5.3 Identification

In this very contrived case, we attempt to approximate the system described
by eq. (3.10) with an RC model. The objective of this is to estimate a set of
RC parameters that the model and the true system as close as possible. We
do so by minimizing the MSE across all trajectories as defined in eq. (3.12)

L(R,C) = 1

LMN

L∑

h=1

M∑

i=1

N∑

j=1

√
(X̂hij −Xhij)2 (3.12)

Applying gradient descent using eq. (3.12) as loss function we obtain the
values for the resistance matrix R and capacitance vector C as shown in
fig. 3.26. Examining the value of the loss function shown in fig. 3.25 we see
that it decreases quickly and monotonically. This indicates that the loss could
probably be reduced by further iterations of the optimization algorithm.

60

Zone 2Zone 1

Zone 4Zone 3

Zone 6Zone 5

Figure 3.23: High level model of the building.

Solver

L : Number of experiments

M: Number of zones

N: Number of Steps

Figure 3.24: Experimental procedure for synthetic dataset. First L different
combinations of zone temperatures are sampled from a random distribution.
Next, the system is simulated using a model white-box model for a specific
controller.

61

0 20000 40000 60000 80000 100000
epochs

10 6

10 5

10 4

10 3

10 2

10 1
lo

ss

Figure 3.25: Loss eq. (3.8) of RC-model of 6-zone building.

3.5.4 Designing the Controller

The goal is to replace the simple controller defined by eq. (3.11) with one
that maximizes comfort while using the minimum amount of energy. This
can be formalized as

Lcontrol(θ) =

∫ tend

t0

αc(t) + βp(t)dt (3.13)

where c(t) measures how comfortable the temperature of the building is, p(t)
is the power used by the HVAC and α, β are weighting coefficients deter-
mining how important comfort is relative to the power consumption. There
are several ways to model how the temperature of a building influences the
comfort of humans [38]. For the sake of simplicity, we define this to be the
2-norm between the set point and the actual temperature, averaged across
all zones:

c(t) =
1

M

M∑

i=1

||xi(t)− x∗i (t)||2

The power consumption of the HVAC system is modelled to be proportional
to the control signal:

p(t) =
1

M

M∑

i=1

ui(t) ∗ c ∗ (xair − xi(t))

Q = mc∆T

62

0 2

0

1

2

3

True

0 2

0

1

2

3

True

0 2
0.0

0.2

0.4

0.6

0.8

1.0
True

0 2

0

1

2

3

Estimated

0 2

0

1

2

3

Estimated

0 2
0.0
0.2
0.4
0.6
0.8
1.0

Estimated

0

2

4

6

8

10

0

2

4

6

8

10

Figure 3.26: True parameters of eq. (3.10) versus those estimated during
training. The off diagonal terms are very close to the true values. The
diagonal terms are not modified during optimization because they correspond
to heat transfer from a node to itself, where the temperature difference will
always be zero.

63

where Q is energy, m is mass, c is heat capacity, ∆T is change in air temper-
ature.

As stated in the disclaimer in the start of the section we have demon-
strated the process for tuning an RC-model to the building from the data.
The next step in the process is to replace the controller defined by eq. (3.11)
with another type of controller that can be tuned to minimize the loss func-
tion defined by eq. (3.13). Since the simulator we have constructed is dif-
ferentiable it is possible to differentiate the loss function with respect to the
parameters of the controller, as shown in fig. 3.7. Our intended plan was
to compare the effectiveness of different methods such as RC-networks and
NODE for modeling the building’s dynamics, as well as different types of
controllers. However, we have not had time to pursue this work further.

64

Chapter 4

Co-simulation

Co-simulation refers to a set of techniques that can be used to simulate
systems by combining simulations of its components [70, 49]. A primary
use-case of co-simulation is to facilitate the development of CPS by allowing
different designs to be tested and compared in a virtual setting [51, 41].
One thing that sets co-simulation apart from traditional simulation is the
emphasis on developing algorithms that can simulate models [49, sec 2.4]
without knowledge of the models internals. The underlying assumption is
that models of the systems components may be defined by different vendors
using a formalism that is appropriate for modeling the given component, as
illustrated in fig. 4.1.

The rest of this chapter is structured as follows. First, Section 4.1 in-
troduces a system consisting of a robotic arm and controller that is used
throughout the chapter. Next, section 4.2 describes the ad-hoc way of writ-
ing co-simulation program. Following this, Section 4.3 introduces the FMI
standard for coupling models to perform a co-simulation of the full system.
Next, Section 4.4 introduces a tool which was developed during the PhD
project, which allows high-level languages to be leveraged in FMI-based co-
simulation. Finally, Section 4.5 demonstrate how we can integrate ML com-
ponent in our existing simulation software using the tools introduced in the
previous section.

4.1 Example: Controlled Robotic Arm

We use the controlled robotic arm system introduced in publication 10 as a
running example in this chapter.

65

+

P

I

D

Plant

Controller

Exporters FMUs Importers

Knowledge

Robot

Figure 4.1: Co-simulation workflow. Exporters refer to tools that can package
and export models referred to as Functional Mock-up Units (FMUs) in the
context of Functional Mock-up Interface (FMI). Importers refer to tools that
can load and interact with FMUs typically in order to perform a simulation.

RobotController

Figure 4.2: Connection between controller and robot model. Source publi-
cation 10

66

4.1.1 Controlled Robot

The states of the system are its angle θ, the angular velocity ω and the
current running through the coils of the electrical motor i. The dynamics of
the Robot are described by the set of ODEs:

f(x) =




θ̇

ω̇

i̇


 =




ω
K·i−b·ω−m·g·l·cos(θ)

J
u(t)·Vabs−R·i−K·ω

L




(4.1)

Where: the derivative of the angle θ̇ is, per definition, equal to the velocity
of the arm ω. The derivative of the angular velocity ω̇ is determined by the
torque coefficientK = 7.45 s−2A−1, the current i, the motor-shaft friction b =
5.0 kg ·m2 · s−1, the gravity acting on the arm, denoted by m · g · l · cos(θ),
with m = 5.0 kg, g = 9.81ms−2, l = 1.0m and the moment of inertia
J = 1

2
ml2 = 0.5. The change in current is determined by the input from the

controller u, the voltage across the coils Vabs = 12.0 V , the resistance R =
0.15 Ω and the motor’s inductance L = 0.036 H. Comparing eq. (4.1) with
eq. (2.9) we see that the main difference is the introduction of third state
variable modeling the current running through the motor.

Contrary to the visualization shown in fig. 4.3 the model only considers
a single joint that rotates around a single axis. In reality, the majority
of industrial robots have more rotational axis and joints. At a conceptual
level modeling this amounts to expanding the state space with angles and
velocities in the additional spatial dimensions, and storing a copy for each
joint. However, the derivation of the dynamics quickly becomes very involved
for more complex robots. In robotics literature there is a distinction between
the concepts of dynamics and kinematics. A model of a robot’s dynamics
is a mapping from the forces applied at each joint to a change of position.
A model of a robot’s kinematics is a mapping from the joint’s angles to the
position of the joints. There is also a distinction between the forward and
inverse problem. Forward dynamics is the process of calculating the changes
in joint position based on torques applied, whereas inverse dynamic is the
process of calculating the torques that must be applied to change the angles
of robot in a given way [92]. For reference [71] describes one way to derive
the forward dynamics of a 6-joint robot. For more general description and
historical perspective on how to derive the dynamics of robot we refer the
reader to [39].

67

Figure 4.3: Screenshot from visualization of robotic arm. For simplicity,
the relative angles of all joints except the first one is set to 0.0. Source
publication 10

4.1.2 Controller

A proportional-integral-derivative (PID) controller [6] is used to generate
the control signals sent to the Robot. The continuous formalization of the
controller is given by:

u(t) = Kpe(t) +Kdė(t) +Ki

∫ t

0

e(τ)dτ (4.2)

where e(t) is a measure of the error of the variable being controlled and Kp,
Ki and Kd are coefficients used to tune how the proportional and derivative
terms are weighted. In case of the robot, the controller is trying to minimize
the error between the desired angle θ∗(t) and the true angle θ(t). Thus,
the error is defined as e(t) = θ∗(t) − θ(t). Tuning the coefficients allow us
to influence the rise time, settling time and overshoot of the system [42].
Increasing Kp generally leads to a faster rise time but at the cost of more
overshoot. The role of the Ki term is to weigh the integral of the error.
Intuitively the integral term is useful to forcing the system out of a state
the error is so low that the control action can not force the system closer
to the setpoint. For instance, as the Robot approaches its setpoint forces
from gravity and the control action may cancel out leading the arm to get
stuck, since the error never changes. In this case the integral will still be
growing which will eventually lead the control action to overpower the forces
generated by gravity acting on the arm.

In practice, most controllers are implemented digitally, which means that
derivatives and integrals must be replaced by discrete approximations. There

68

are several ways to do this, the simplest being to replace derivatives by first-
order differences

ė(tk) ≈ ėk =
ek − ek−1

T
,

and integrals by sums

∫ tk

0

e(tk) ≈ Ek =
N∑

n=1

ekn · T

where ek = e(tk), T is the sampling time and N = tk/T is the number of
samples between time 0 and tk. After replacing the continuous definitions in
Equation 4.2 we obtain an equation that can be implemented on a discrete
controller

uk = Kpek +KiEk +Kdėk (4.3)

Another consideration to take into account is that in real life the controller
must first sample the state of the system using from a sensor, compute the
output of the control algorithm and then write that value to the physical
output of the controller. This is sometimes referred to as the sample time
of the controller. In cases where the sampling time is large enough that
the real system may change its state significantly this can lead to instability
because the output of the controller is delayed [42]. For analysis done in
the frequency domain, there exist way to emulate a discrete time delay, such
as the pade approximation [42]. When simulating in the time-domain using
numerical simulation the delay can be modelled by holding the value of the
controller output until the simulation has advanced by an amount of time
corresponding to the sampling time of the controller.

4.2 Monolithic vs Co-simulation

There are two fundamentally different ways to simulate a coupled system like
the controlled robotic arm. The first approach is to write a program defining
a loop that:

1. Computes the output of the controller using eq. (4.3)

2. Computes derivatives of the robotic arm for the given control input
using eq. (4.1)

3. Integrates the derivatives with the current state

4. Repeat 1-4 until the simulation has reached its termination

69

Co-Simulation

Robot

Controller

step(0.4)
Monolithic

4 x internal_step(0.1)

Robot

Controller

internal
step-size

communication
step-size

Figure 4.4: Difference between a monolithic simulation and a co-simulation.

We refer to this approach as building a monolithic simulator. This approach
is suitable for simple systems where we have full access to the internals of
each sub-system. The drawback of this approach is that the complexity of
the simulation problems scales poorly with the number of components. A
different approach is to write a program that allow for the simulation of
the system while treating the models as black-boxes, which we refer to as
a co-simulation algorithm. The differences the monolithic and co-simulation
approach can be seen in fig. 4.4.

An implication of treating models as black-boxes is that the numerical
integration must happen inside the models, because only it has access to
its derivatives. The role of the co-simulation algorithm is orchestrating a

70

0 2 4 6 8 10
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

(t)

setpoint
hinternal = hcommunication

hcommunication = 0.125

Figure 4.5: Co-simulation of the controlled robotic arm system with varying
communication step-sizes. The blue line depicts the case where the internal
and communication step-size are equal, which results in synchronization at
each internal step. The orange line depicts a case where the models are syn-
chronized every 1/8 of a second. The internal-step size is for both simulations
is 1/1024.

sequence of calls to the models to advance their simulation time, which we
refer to as stepping. A key concept is that when models are asked to step for
some duration, they may choose to take multiple smaller steps internally to
reduce the numerical error. We refer to the length of the steps taken inter-
nally as the internal step-size of a model. Another important concept is that
the outputs of the models are not synchronized between the internal steps
but rather at communication points that are typically spaced further apart.
We refer to the spacing of the communication points as the communication
step size.

Picking the right communication step-size is important for the accuracy
of the simulation as shown in fig. 4.5. At one end of the extreme the commu-
nication step-size can be chosen to be the smallest of the internal steps-sizes,
leading to frequent synchronizations. At the other extreme the communi-
cation step-size can be very large compared to the internal step-sizes of the
models. For the controlled robotic arm this may result in the system becom-
ing unstable, because the output of the controller is held constant between
each communication point from the perspective of the robotic arm.

71

4.3 Functional Mock-up Interface

Given the wide range of tools for modeling and simulating systems, stan-
dardized interfaces have been developed to enable these different tools to
communicate their simulation results. One such interface is the FMI [17, 4].
It specifies a file format for packaging a model’s assets into an archive that
can be loaded by tools supporting the standard, the package is referred to
as a FMU. The other part of the standard is a set of functions that can be
called by the simulation tool to interact with the FMU. We will refer to tools
that loads and interacts with FMUs as importers and tools that produce
FMUs as exporters. The most recent major version of the standard, FMI
3.0, defines 3 different interfaces that a FMU must implement one or more
of. The use-cases and the functionality that the FMU must implement can
be summarized as:

• Model-Exchange (ME): The FMU exposes its derivative which the im-
porter integrates to advance the simulation

• Co-Simulation (CS): The FMU expose a method to advance the state of
the FMU ahead in time, which typically means that the FMU contains
its own solver

• Scheduled Execution (SE): Newly introduced and designed to deal with
periodic and discrete events

The focus of this section is on the second type, CS FMUs.

4.3.1 Implementing a FMU

The process for implementing a FMU is depicted in fig. 4.6 From a practical
perspective a FMU is a collection of files that define its interface and behavior.
For ease of distribution the files are compressed in a zip archive and have the
extension .fmu rather than the conventional .zip.

The behavior of the model is defined by implementing a set of functions
declared by a C-header file distributed as part of the standard. For instance,
to implement a FMI 3 compliant FMU one would have to implement the
functions from the header fmi3Functions.h. The functions that must be
implemented depends on which of the 3 interfaces we wish to support. In
our case we wish to support the co-simulation part of the standard. After the
interface has been implemented the C files are compiled to a shared library
and stored in the binaries directory. Shared libraries are referred to by
different names in the context of different operating systems and the library

72

Robot.fmu

Binaries

Darwin64

Linux64

robot.so

Win64

fmi3functions.h

Compiler

Robot

modelDescription.xml

robot.dll

robot.dylib
robot.c

Implement Model as FMU

Figure 4.6: Conventional process for implementing eq. (4.1) as a FMU. The
derivative and numerical integration scheme of the model is defined by the im-
plementation of the fmi3DoStep function declared in the fmi3functions.h

header file. The inputs, outputs, and parameters of the model are declared
in the modelDescription.xml file which is placed in the root of the FMU.

73

have different file-extension. For instance, Linux refers to them as shared
objects and use the extension .so. When an importer loads a FMU it links
the shared libraries allowing it to call methods of the FMU.

The interface of the FMU is declared in a special configuration file mod-
elDescription.xml which we will refer to as the model description. The file
declares the inputs, outputs, and parameters of the model as well as other
meta information. When an importer loads a FMU it reads the model de-
scription and parses its contents and presents this information to the user
of the tool. Using this information the user can then define the coupling
between the different models.

4.4 Universal Functional Mock-up Units

Research in SciML is generally conducted in high-level scripting languages
such as Python which makes it possible to rapidly prototype ideas using
modern libraries for scientific computing and ML. Being able to use the same
languages and reuse existing code inside FMI-based co-simulation has the
potential to greatly reduce the barrier to integrating these techniques. Based
on this need a new tool Universal Functional Mock-up Units (UniFMU) was
developed in publication 7. Specifically, the tool provides the following utility
to the user:

• Support for Python, C#, Java and MATLAB FMUs out of the box.

• An easy-to-use extension mechanism to provide support for any lan-
guage.

• CLI to generate template FMUs using a single command.

• Pre-built binaries for Windows, Linux and macOS, eliminating the need
for cross-compilation and complex tool-chain setup.

• Flexible configuration of the execution environment, such as running
inside a Docker container or activating a virtual environment.

Contribution 7: Create a tool for coupling languages like Python, Java
and C# code into a FMI based co-simulation.

The process for implementing a FMU using the tool can be seen in fig. 4.7.
The most important concept is that the tool eliminates the need to compile
the binaries of the FMU by providing pre-compiled binaries for Linux, ma-
cOS and Windows. The behavior of the model is instead implemented by a

74

script or a program located in the resources folder, which we refer to as the
implementation of the model. A configuration file launch.toml defines the
procedure for initializing the model. For instance, for a model implemented
in Python it would invoke the interpreter with the name of the script im-
plementing the model. The configuration file is made to be modified by the
user, which gives a great flexibility towards bootstrapping models that may
require a complex setup to initialize.

The tool itself is a command-line interface (CLI) which can be used to
generate templates of FMUs for a selection of languages. The generated
FMUs are fully functional out of the box and serve as a starting point for
implementing the behavior of the specific system. For instance the template
for a Python FMU contains a file model.py which mirrors the methods of
the FMI-API in an object-oriented fashion as depicted in listing 4.1.

1 class Model:

2 def fmi2DoStep(self , current_time , step_size ,

no_step_prior):

3 return Fmi2Status.ok

4

5 def fmi2EnterInitializationMode(self):

6 return Fmi2Status.ok

Listing 4.1: Implementation of FMI-API in Python template

To implement a model of the robotic arm, the equations defining the deriva-
tives would have to be defined in the script as well as the procedure for
applying numerical integration. An important point is that the script itself
can be executed outside context of a co-simulation because it is valid Python.
From practical experience this makes development much easier because the
model can be implemented and tested using the same workflow as you would
otherwise.

The tool uses remote procedure call (RPC) as a means to communicate
from the generic binary to the implementation of the model as shown in
fig. 4.8. When the FMU is instantiated a communication channel is estab-
lished between the binary and the model. Whenever a call to the C-API
is made it is converted into a message and sent to the model. In the case
of a Python template, a script backend.py is responsible for receiving the
commands and invoking the corresponding methods on the model implemen-
tation. More details about this can be found in publication 7. A discussion
on the limitations and future work on the tool can be found in section 5.2.1.

75

unifmu.so

Robot.fmu
Binaries

Darwin64

Linux64

Win64

unifmu.dll

unifmu.dylib

backend.py

Resources

Robot.fmu

modelDescription.xml

UniFMU

unifmu generate
--language python robot.fmu

generic binaries
no need to compile

launch.toml

linux = ["python3", "backend.py"]
macos = ["python3", "backend.py"]

windows = ["python", "backend.py"]

robot.py

Figure 4.7: Implementing a FMU using UniFMU

76

Importer

Conventional

robot.so

RPC-basedEmbedded
Interpreter

C-API

wrapper.so

model.py
python.so

FMU Author

Wrapper Author

Interpreter Author

invoke

RPCwrapper.so

model.py
python

Figure 4.8: Different approaches for implementing FMUs.

4.5 Machine Learning and Co-Simulation

When modeling a large complex CPS there may be parts that are well studied
and amenable to traditional first-principles based modeling techniques and
there may be other parts where it is difficult to derive a model. In situations
like these we may create FMUs of the former parts using existing tools and
use ML to create models that we then pack as FMUs and integrate into our
co-simulation environment. In publication 11 we investigated this approach
in the context of a single family house as shown in fig. 4.9.

Contribution 8: Demonstrate how a ML model can be integrated in a tool
supporting FMI-based co-simulation

The house was modeled in Dymola [19] using the build in block design
workflow for all components but the Hot Water Tank shown in fig. 4.10.
Based on our work in publication 12 where we compared the performance of
various combinations of features and ML models, and found random forest
regression [96] to be the most robust. The template FMU was generated
using UniFMU and the method was implemented as shown in listing 4.2

1 from sklearn.ensemble import RandomForestRegressor

2 from sklearn.datasets import make_regression

3 ...

77

Figure 4.9: Single family house. All components except the Hot Water Tank
are modelled in Dymola and the Hot Water Tank as a FMU created by
UniFMU. Source contribution 8

4 def do_step(current_time ,step_size ,no_step_prior):

5 self.temp_next=self.forrest(self.temp_prevs)

6 return Fmi2Status.ok

Listing 4.2: Implementation of fmi2DoStep by storage model.

78

Figure 4.10: Schematic of the house in Dymola, the box in the middle is a
FMU export by UniFMU

79

Chapter 5

Conclusion

The two previous chapters presented the contributions made during this PhD
project in the area of SciML and its use in FMI-based co-simulation. This
chapter provides a discussion of the extent of which the contributions have
addressed the research questions outlined defined in section 1.3. Based on
this discussion we outline future work that the author believe is important
to advancing the use of SciML for simulating physical systems. This can
be seen as a critical review of what has not been accomplished in this PhD
thesis to fully answer the research questions. Recall the relationship between
the publications included in part II and the research questions was shown in
fig. 1.5 in the introduction. The main contribution presented in each paper
and how they are related is shown in fig. 5.1. The following three sections
addresses the extent that each research question has been addressed by the
contributions and outlines future research directions. Finally, section 5.4
provides a brief concluding remark to round up the thesis.

5.1 SciML in Simulation

The first research question was defined in section 1.3 as follows:

SciML in Simulation: How can we make it easier to select and apply
the appropriate SciML methods in the context of modeling and simulating
a physical system? Additionally, how can knowledge of the physical system
be integrated in the modeling process to obtain more accurate and robust
models?

In an ideal world we would be able to identify the most effective type of
model to apply to a given problem based on a simple set of rules. When
deriving a model based on data, as we do in ML, we answer this question by

80

SciML in simulation Tool integration

SciML in related applications

Published

Ongoing work

UniFMU Dockerization

HVAC identification
and control

Universal Functional Mock-up Units
(UniFMU)

Machine Learning
in Co-Simulation

Building Energy Forecasting

Model-based Fault
Identification

NeuroMANCER
Constrained Optimization

Framework

SciML taxonomy and
implementations

Figure 5.1: Map of publications and the contributions made by them. The
colored shapes next to each contribution indicate which area the contribution
is in

benchmarking different types of models and combinations of hyperparam-
eters to see which one performs the best. By running benchmarks across
several large datasets we start to see patterns in the characteristics of the
models that performs well across all datasets, and we will discover tricks
that lead to improved performance. For instance, it has been observed that
convolutional NNs [74] perform well in the context image processing tasks.
Intuitively this makes sense, convolution is a mathematical operation which
has been used extensively in image processing before the recent growth in
NNs popularity. Another example is the use of shortcuts between the layers

81

TO
P 5

 A
CC

UR
AC

Y

AlexNet​AlexNet

VGG-16​VGG-16
ResNet-152​ResNet-152

NASNET-A(6)​NASNET-A(6)
ResNeXt-101 32x48d​ResNeXt-101 32x48d

Florence-CoSwin-H​Florence-CoSwin-H

Other models Models with highest Top 5 Accuracy

2014 2016 2018 2020 2022
75

80

85

90

95

100

105

Figure 5.2: Evolution of model accuracy on ImageNet dataset. Source https:

//paperswithcode.com/sota/image-classification-on-imagenet

of ResNets which makes them easier to train [57, 78]. Ideas like these have
been incorporated along with others to create increasingly effective methods
for tasks where large datasets exist. For instance, the 99% top-5 accuracy
on the ImageNet [32] dataset went from 85% to 99% from 2014 to 2022, as
shown in fig. 5.2, well above human performance [109]. Benchmarks like these
gives provides a good basis for selecting which type of model to apply to a
related problem. For instance, when faced with an image classification task,
a model that achieves SOTA performance is probably a good starting point
for further experimentation. Additionally, the results also establish an upper
bound for the accuracy our model could achieve given a comparable amount
of data for training and effort spent on fine-tuning. Unfortunately, we do not
have the same amount of empirical evidence at applying ML in the context
of scientific applications which makes it difficult to give concrete recommen-
dations on which type of model to apply and what kind of performance to
expect.

One of the characteristics separating SciML from traditional ML is that
they leverage whatever prior knowledge the domain expert may have of the
physical system’s behavior or properties. As such their implementation must
be custom tailored to the specific problem based on its physics — which con-
trasts most ML methods that are more general purpose. This makes bench-
marking the performance of SciML methods more time-consuming since the

82

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

models would have to be adapted to reflect the physics of a new problem.
Knowledge about the physical properties can take many forms and may be
incorporated in the modeling process in different ways. One example is the
clever use of AD in PINNs used to obtain the derivative of one state from
another. The effect of this is quite significant as seen by comparing fig. 3.15
and fig. 3.16. Likewise, we saw that explicitly integrating the state with
the derivative was much more effective than relying on the NN to learn this
implicitly in the case of the time-stepper models described in section 3.3.3.

The names used to reference different methods varies in SciML literature
due to the influx of ideas from neighboring fields that have their own distinct
nomenclature. This can lead to confusion for newcomers to the field. A
concrete example is the use of the term PINN which is used by some to
reference a specific type of model we discussed in section 3.3.4, but also
the general idea of incorporating physics in a NN. The primary contribution
to addressing this issue is the taxonomy presented in contribution 1, that
describes the most commonly encountered SciML methods in terms of how
they produce a prediction, how they are trained, and their inherent strengths
and weaknesses. In addition to the taxonomy contribution 2 provides source
code implementations for the models described by the taxonomy all applied
to the same running example. It is the authors hope that this code has
helped readers to try out the different types of models on the particular
systems they are studying. At the time of writing 43 people have starred the
repository containing the source code, which indicates that people have found
the reference implementations useful, although the exact impact is difficult to
quantify. Finally, contribution 6 demonstrates how different choices of models
influences the accuracy of the model in the context of modeling a building’s
thermal dynamics. Choosing an RC-model as the basis of modeling the
system implicitly encodes the concept of thermal resistance and capacitance.
Based on our knowledge of the physics we ensured that the resistance matrix
was symmetric which is equivalent to saying that the thermal resistance
between two rooms is the same in both directions.

Our contributions to answering the research question is demonstrating
that these techniques can be effectively using data generated synthetically
by simulating a selection of dynamical systems for varying initial conditions.
Using synthetic data allow us to study the influence that the training data
has on the final model’s accuracy. For instance, we can examine how the
density of initial conditions and the length of the resulting trajectories has
on generalization of the model to unseen data. We have not systematically
studied the influence of how real-life factors such as noise and partial observ-
ability of states may influence the learning process. These factors are still
possible to study in a synthetic setting by defining a noise model and how

83

the value of latent variables are reflected in the observable variables.

5.1.1 Systematic Benchmarking

It is important for the SciML community to develop best practices and to
compile a benchmark dataset consisting of data captured from systems that
are representative of what would be encountered in real life. This will allow
for a systematic evaluation of the effectiveness of various SciML methods and
allow us to identify promising classes of models. The first step is to define the
concrete task we are trying to solve, how to measure the performance, and
finally how to characterize the data from the physical systems which we will
be learning from. For ODEs, data could be time-series characterized by the
value of each state sampled at a number of points in time. For PDEs data
could be a series of snapshots in time, each characterized by the system’s
state sampled at a number of spatial coordinates. Ideally, prior knowledge
of the system should be encoded in a way that allows a model to make use
of it, without the need to custom tailor the model’s implementation to a
given physical system. Using prior knowledge in the context benchmarking
models is interesting because the performance of a model is not determined
by its architecture alone but also by how effectively the knowledge can be
incorporated.

Some benchmarks have been proposed in the SysId community such as
these1, but the number of datasets is rather limited, and they are distributed
in a manner that requires considerable effort to load the data for each dataset.
There has also been some effort in the SciML community such as this bench-
mark for PDEs [120], which also provides an in depth discussion on the chal-
lenges of creating benchmarks for SciML. More qualitative insight can be
gained by looking at paperswithcode.com which list 223 datasets with 442
benchmarks published related to image classification and 21 with 0 bench-
marks related to physics. Clearly, SciML is still very niche compared to more
well established application like image processing. However, it is the author’s
belief that finding effective ways to benchmark SciML is well worth the effort
required despite the challenges.

5.1.2 Experimental Design and Training

Applying SciML methods to real-life applications require that we capture
data from the physical system through measurements. Because capturing
data might be time-consuming and expensive we are interested in capturing

1https://www.nonlinearbenchmark.org/

84

paperswithcode.com
https://www.nonlinearbenchmark.org/

data that tells us important things about its dynamics. In the SysID com-
munity the process of figuring out how to illicit an interesting response from
the system is referred to as experimental design [80, chap.13]. This process
is just as important when applying SciML methods to real-life systems than
it is in SysID. This process should be informed based on factors such as our
understanding of the physical system, the type of model we are trying to fit,
and the optimization algorithm we employ. For example, fitting the coef-
ficients of an ODE to data as described in section 3.2 likely requires fewer
data points than fitting an NODE to the same problem. Generally speak-
ing, a model with many parameters like a NN is able to realize a function
that goes through the data points in the training data, but without it actu-
ally capturing the underlying dynamics, as shown in fig. 3.15. Incorporating
knowledge in the modeling process can mitigate this issue by constraining
the set of parameters considered to be good solutions by the optimizer. A
concrete example is how PINNs incorporate physical equations in the loss
function as described in section 3.3.4 which effectively filters out solutions
that fit through the training data, yet are physically inconsistent.

A closely related topic is how to formulate the optimization problem.
When training time-stepper models we are interested in finding a model for
which the simulation matches results in trajectories that closely resemble
those sampled from the true system. Error in the derivatives produced by
the model are propagated through the steps of the solver leading to error
being accumulated over time. From personal experience, the more integration
steps are taken during training, the more difficult optimization of the time-
stepper’s parameters become. Others have noted that the step-size used
during training has an effect on the dynamics realized by the model after
training [93]. These factors highlight the need to establish guidelines for how
to effectively train time-stepper models.

5.1.3 Knowledge Incorporation

An interesting direction would be to see if AD could be used in time-stepper
models to enforce that a given state may represent the derivative of a different
state, as was the case for the PINNs. As seen in section 3.3.4 when comparing
fig. 3.15 to fig. 3.16 this has a huge impact on what the model learns. Another
promising approach is to combine modeling using first-principles with the
black-box models used in SciML. This idea has already been explored in [102],
however it would be interesting to apply this hybrid approach to real life
systems for which accurate first-principles models already exist to see if a
hybrid model can outperform them.

85

5.2 Tool Integration

The second research question was defined in section 1.3 as follows:

Tool Integration: How can we make the integration of SciML methods in
existing simulation environments as easy as possible?

A practical challenges to integrating SciML methods in existing modeling
and simulation tools is that they are rarely designed with the execution of
a users code in mind. The typical approach is to provide a user-friendly
interface for modeling, simulating and plotting results. Contrary to this, re-
search in SciML methods typically use high-level scripting languages where
the researcher has full control of the simulation algorithm as described in
section 4.2. Expecting the developers of existing tools to provide integrated
support for SciML methods is unreasonable, and it is difficult to imagine
that any tool would be able to keep up with the rapid advances in ML.
Likewise, expecting the user to stop using simulation tools and re-implement
the tool’s functionality in a script along with the SciML methods is also not
an ideal scenario. The research outlined in this thesis focuses on simulation
using the FMI standard, which defines a standard interface for exchanging
and simulating models originating from different simulation tools. The pri-
mary contribution to addressing this is the development of the tool UniFMU
representing contribution 7 which makes it possible to use high level script-
ing languages in FMI-based co-simulations. Building on this, contribution 8
represents a practical example of how this can be used to integrate an ML
model in Dymola — a popular modeling and simulation tool. Finally, con-
tribution 5 represents a novel utility of this approach allowing model-based
parameter estimation within an FMI-based co-simulation.

The tool UniFMU developed during this PhD project use models written
in selection of popular high-level programming languages in any tool support
FMI-based co-simulation. For instance, the user might choose to use Python
and the PyTorch library as a basis for implementing and training a SciML
model. This greatly reduces the barrier to creating FMUs, since the user
can use programming languages and software libraries that are appropriate
for a given modeling task. Additionally, it removes a lot of the complicating
factors that makes implementing an FMU correctly difficult such as memory
management, cross-compiling for multiple platforms and the packaging of
assets. There are other tools out there that target specific programming
language like FMI.jl [123] for Julia and PythonFMU [56] for Python. An
advantage of the approach taken by UniFMU is that it can be extended by
the user to integrate new language and simulation environments, without
having to modify the tool itself or having to deal with many of the technical

86

complexities of the FMI standard. The tool is used frequently in our own
research group and by researchers from at least one other university. The
tool is also made publicly available on GitHub where it has been starred 22
times.

5.2.1 Ease of use

A challenge of working with FMUs is ensuring that their model descrip-
tion is consistent with the model’s implementation. The approach used by
PythonFMU is to provide an object-oriented API that the user must use to
declare the models variables inside the script itself. By running the script the
model description is regenerated such that it is consistent the implementa-
tion. The drawback is that it requires that the same concept be implemented
and maintained for all programming languages supported by the tool. The
semantics of FMI variables are complex/obscure enough that around half of
the FMUs found in a cross-check repository have one or more errors in their
model descriptions [11, Sec. 4]. Likewise, the logic that would need to be
implemented for each programming supported programming language would
non-trivial. An alternative solution would be to develop a standalone appli-
cation for declaring interface of an FMU through a GUI or from a browser.
One benefit of a standalone approach is that it would be useful to anyone
implementing FMUs from scratch or those who develop tools for generating
them.

5.2.2 Extend Support for ML features

The new FMI 3 standard introduces features like array types and new ways
of accessing derivatives, which would be very useful for anyone wanting to
integrate ML-models like NNs in their systems. Packages like Flux.jl [123]
makes it possible to integrating FMUs in ML applications by enabling gra-
dient information to pass through the FMU — provided it implements the
appropriate FMI functions. A potential use case of this would be tuning
the parameters of a controller using gradient-based methods in cases where
the dynamics of the physical system are implemented by an FMU to protect
intellectual property.

5.2.3 Performance Benchmarking

UniFMU relies on RPC for communication between the binary and the model
which is executing on another process. When a function is invoked on the
FMI interface, a message describing the which function was called and which

87

arguments were passed is created and sent to the model. When the model
receives this message it unpacks it, does some computation, and then returns
a message describing the result of the function. The overhead scales inversely
with the communication step size used in the co-simulation, because we need
to take more steps to simulate the system for a given time, than had we
taken a fewer but larger steps. The exact size of this overhead depends on
the machines operating system, hardware, and other programs that might
be taking up resources at the same time. A benchmark is provided in [55]
measures this overhead to be around 150 µs for a different but comparable
RPC implementation to ours. For models based on NNs this is likely not a
significant issue since the forward pass is likely to take significantly longer.
Extending the UniFMU with the capabilities to benchmark FMUs would be
useful for tracking the performance of those generated by the tool, and it
would also be a useful for researchers developing similar tools.

5.3 SciML in related applications

The third and final research question was defined in section 1.3 as follows:

SciML in related applications: What are other applications of SciML
that are relevant in the engineering of systems beyond their use of obtaining
models of the system’s dynamics?

The gradient based techniques used to train SciML models can also be use-
ful for other applications during the engineering of systems. Some of these
has been touched apart in this thesis. Contribution 5 demonstrates how
gradient-based optimization can be used to monitor for changes in a system’s
parameters, enabling the detection and localization of faults. Contribution 6
demonstrates a workflow for tuning a controller for an HVAC system in a
building. First, a model of the building’s thermal dynamics is obtained by
fitting the coefficients of an RC-model to the data. The model can now be
used as a surrogate for buildings thermal dynamics as a means of tuning
the controller since the simulation is differentiable. The parameters of the
controller can then be tuned end-to-end because both the model and the
controllers are differentiable. Common for both applications is that they rely
on being able to differentiate the solution produced by the simulator with
respect to parameters of the system or the controller. Using AD makes it
much less technical to write differentiable simulators, because the gradient of
a program can be obtained from the program automatically. These contribu-
tions only scratch the surface of the problems SciML can be applied to. The
field of SciML and its applications is rapidly expanding as the techniques

88

are being applied to different branches of natural sciences. Recent works like
[73, 134, 91, 122] attempts to provide a broad overview of the many applica-
tions and provide future perspectives. In the author’s opinion the challenge
of SciML is not finding new applications, but rather moving from the proof
of concept stage to applying them to complex real-life problems. This effort
would benefit greatly form standardized benchmarks representing the most
common application areas.

5.3.1 Parameter Estimation

The parameter estimation described in publication 8 was done using the
downhill simplex method [100] which only uses function evaluations and not
derivatives. This is not optimal since each evaluation of requires that the
numerical solver takes multiple steps. Re-implementing the simulation al-
gorithm using AD would eliminate this problem and allow the optimization
algorithm to scale better to a larger number of parameters.

5.3.2 Control

The work presented in section 3.5 on the control of Heating, Ventilation,
and Air Conditioning (HVAC) systems is still under progress. There are
several ways that SciML methods can be used to design controllers for such
as system. One way would be to treat the control inputs to the system as
parameters of an optimization problem that we could solve using gradient
descent. Solving this at each step would lead to a classical MPC problem. An
extension of this idea is to use a NN as a surrogate of the system’s dynamics
to speed up the optimization step as described in [111]. Another approach
would be to use a conventional PID controller, but treat the coefficients
as parameters of an optimization problem. Finally, the same idea could
be applied using a NN, again tuning the parameters using gradient-based
optimization.

5.3.3 Design Optimization

Gradient-based optimization can also be used to optimize the design of an
engineered system. The loss function can be defined such that it measures
the performance and the price of the system for a given choice of parameters.
For instance, we could consider the task of choosing the optimal wheel size
for the agricultural robot seen in fig. 3.20. THE procedure for optimizing
the wheel size would be picking some initial guess for what a good wheel
size would be, then simulate the system for a period of time given, compute

89

the loss, then differentiate the loss with respect to the parameter describing
the wheel size. It would be interesting to examine the effectiveness of this
approach compared to ad-hoc design optimization.

5.4 Thank you

All that remains is to thank the reader for their attention. Hopefully it
managed to convey the most important concepts from the field of SciML and
have convinced you of the potential it has when applied to the modeling and
simulation of physical systems.

The tools necessary to apply SciML are already here today. What remains
is to apply it at a larger scale to develop robust methods and gain insight
into the requirements and limitations of the techniques — just as researchers
have done for image and natural language processing.

90

91

Bibliography

[1] Mart́ın Abadi et al. TensorFlow: Large-scale Machine Learning on
Heterogeneous Systems. 2015. url: https://www.tensorflow.org/.

[2] Abdul Afram and Farrokh Janabi-Sharifi. “Theory and Applications
of HVAC Control Systems – A Review of Model Predictive Control
(MPC)”. In: Building and Environment 72 (Feb. 1, 2014), pp. 343–
355. issn: 0360-1323. doi: 10.1016/j.buildenv.2013.11.016.
url: https://www.sciencedirect.com/science/article/pii/
S0360132313003363 (visited on 03/13/2023).

[3] R. K. Al Seyab and Y. Cao. “Nonlinear System Identification for
Predictive Control Using Continuous Time Recurrent Neural Net-
works and Automatic Differentiation”. In: Journal of Process Control
18.6 (July 1, 2008), pp. 568–581. issn: 0959-1524. doi: 10.1016/j.
jprocont.2007.10.012. url: http://www.sciencedirect.com/
science/article/pii/S095915240700159X (visited on 09/08/2020).

[4] Andreas Junghanns et al. “The Functional Mock-up Interface 3.0 -
New Features Enabling New Applications”. In: 14th Modelica Confer-
ence 2021. Sept. 27, 2021, pp. 17–26. doi: 10.3384/ecp2118117. url:
https://ecp.ep.liu.se/index.php/modelica/article/view/178

(visited on 05/23/2023).

[5] D. K. Arrowsmith and C. M. Place. Dynamical Systems: Differential
Equations, Maps and Chaotic Behaviour. Dordrecht: Springer Nether-
lands, 1992. isbn: 978-94-011-2388-4.

[6] Karl Johan Aström and Richard M Murray. Feedback Systems: An In-
troduction for Scientists and Engineers. 2010. isbn: 978-1-4008-2873-
9. url: https://doi.org/10.1515/9781400828739 (visited on
05/06/2021).

[7] Jan Awrejcewicz.Ordinary Differential Equations and Mechanical Sys-
tems. Cham: Springer International Publishing, 2014. isbn: 978-3-319-
07658-4 978-3-319-07659-1. doi: 10.1007/978-3-319-07659-1. url:

92

https://www.tensorflow.org/
https://doi.org/10.1016/j.buildenv.2013.11.016
https://www.sciencedirect.com/science/article/pii/S0360132313003363
https://www.sciencedirect.com/science/article/pii/S0360132313003363
https://doi.org/10.1016/j.jprocont.2007.10.012
https://doi.org/10.1016/j.jprocont.2007.10.012
http://www.sciencedirect.com/science/article/pii/S095915240700159X
http://www.sciencedirect.com/science/article/pii/S095915240700159X
https://doi.org/10.3384/ecp2118117
https://ecp.ep.liu.se/index.php/modelica/article/view/178
https://doi.org/10.1515/9781400828739
https://doi.org/10.1007/978-3-319-07659-1

https://link.springer.com/10.1007/978- 3- 319- 07659- 1

(visited on 05/22/2023).

[8] Anthony Bagnall et al. “The Great Time Series Classification Bake
off: A Review and Experimental Evaluation of Recent Algorithmic
Advances”. In: Data Mining and Knowledge Discovery 31.3 (May 1,
2017), pp. 606–660. issn: 1573-756X. doi: 10.1007/s10618-016-
0483-9. url: https://doi.org/10.1007/s10618-016-0483-9
(visited on 05/12/2020).

[9] Nathan Baker et al. “Workshop Report on Basic Research Needs for
Scientific Machine Learning: Core Technologies for Artificial Intelli-
gence”. In: (Feb. 2019). doi: 10.2172/1478744. url: https://www.
osti.gov/biblio/1478744.

[10] Jerry Banks et al. Discrete-Event System Simulation. 5th edition. Up-
per Saddle River: Pearson, June 26, 2009. 648 pp. isbn: 978-0-13-
606212-7.

[11] Nick Battle et al. “Towards a Static Check of FMUs in VDM-SL”.
In: Formal Methods. FM 2019 International Workshops. Ed. by Emil
Sekerinski et al. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 272–288. isbn: 978-3-030-54997-8.
doi: 10.1007/978-3-030-54997-8_18.

[12] Atilim Gunes Baydin et al. “Automatic Differentiation in Machine
Learning: A Survey”. In: Journal of Machine Learning Research 18.153
(2018), pp. 1–43. issn: 1533-7928. url: http://jmlr.org/papers/
v18/17-468.html (visited on 03/17/2023).

[13] Gordon Bell, Tony Hey, and Alex Szalay. “Beyond the Data Deluge”.
In: Science (New York, N.Y.) 323.5919 (2009), pp. 1297–1298. doi:
10.1126/science.1170411. eprint: https://www.science.org/
doi/pdf/10.1126/science.1170411. url: https://www.science.
org/doi/abs/10.1126/science.1170411.

[14] Katharina Bieker et al. “Deep Model Predictive Control with Online
Learning for Complex Physical Systems”. May 24, 2019. arXiv: 1905.
10094 [cs, math, stat]. url: http://arxiv.org/abs/1905.
10094 (visited on 06/17/2020).

[15] Christopher Bishop. Pattern Recognition and Machine Learning. In-
formation Science and Statistics. New York: Springer-Verlag, 2006.
isbn: 978-0-387-31073-2. url: https://www.springer.com/gp/
book/9780387310732 (visited on 11/04/2020).

93

https://link.springer.com/10.1007/978-3-319-07659-1
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.2172/1478744
https://www.osti.gov/biblio/1478744
https://www.osti.gov/biblio/1478744
https://doi.org/10.1007/978-3-030-54997-8_18
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1126/science.1170411
https://www.science.org/doi/pdf/10.1126/science.1170411
https://www.science.org/doi/pdf/10.1126/science.1170411
https://www.science.org/doi/abs/10.1126/science.1170411
https://www.science.org/doi/abs/10.1126/science.1170411
https://arxiv.org/abs/1905.10094
https://arxiv.org/abs/1905.10094
http://arxiv.org/abs/1905.10094
http://arxiv.org/abs/1905.10094
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732

[16] Ekaba Bisong and Ekaba Bisong. “Google Colaboratory”. In: Building
machine learning and deep learning models on google cloud platform:
a comprehensive guide for beginners (2019), pp. 59–64.

[17] T. Blockwitz et al. “Functional Mockup Interface 2.0: The Standard
for Tool Independent Exchange of Simulation Models”. In: Proceed-
ings. 9th International Modelica Conference. München, 2012. url:
https://elib.dlr.de/78486/ (visited on 03/08/2023).

[18] James Bradbury et al. JAX: Composable Transformations of Python+NumPy
Programs. Version 0.3.13. 2018. url: http://github.com/google/
jax.

[19] Dag Brück et al. “Dymola for Multi-Engineering Modeling and Sim-
ulation”. In: Proceedings of Modelica. Vol. 2002. Citeseer. 2002.

[20] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and En-
gineering: Machine Learning, Dynamical Systems, and Control. Cam-
bridge: Cambridge University Press, 2019. isbn: 978-1-108-42209-3.
doi: 10.1017/9781108380690. url: https://www.cambridge.org/
core/books/datadriven-science-and-engineering/77D52B171B60A496EAFE4DB662ADC36E

(visited on 10/18/2021).

[21] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and En-
gineering: Machine Learning, Dynamical Systems, and Control. 2nd ed.
Cambridge: Cambridge University Press, 2022. doi: 10.1017/9781009089517.

[22] Buildings – Analysis. IEA. url: https://www.iea.org/reports/
buildings (visited on 03/13/2023).

[23] Richard L. Burden, J. Douglas Faires, and Annette M. Burden. Nu-
merical Analysis. Tenth edition. Boston, MA: Cengage Learning, 2016.
896 pp. isbn: 978-1-305-25366-7.

[24] Giuseppe Carleo et al. “Machine Learning and the Physical Sciences”.
In: Reviews of Modern Physics 91.4 (Dec. 6, 2019), p. 045002. issn:
0034-6861, 1539-0756. doi: 10.1103/RevModPhys.91.045002. arXiv:
1903.10563. url: http://arxiv.org/abs/1903.10563 (visited on
06/15/2020).

[25] François Edouard Cellier. Continuous System Modeling. Springer Sci-
ence & Business Media, 1991.

[26] François Edouard Cellier and Ernesto Kofman. Continuous System
Simulation. Springer Science & Business Media, 2006. isbn: 978-0-
387-26102-7.

94

https://elib.dlr.de/78486/
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1017/9781108380690
https://www.cambridge.org/core/books/datadriven-science-and-engineering/77D52B171B60A496EAFE4DB662ADC36E
https://www.cambridge.org/core/books/datadriven-science-and-engineering/77D52B171B60A496EAFE4DB662ADC36E
https://doi.org/10.1017/9781009089517
https://www.iea.org/reports/buildings
https://www.iea.org/reports/buildings
https://doi.org/10.1103/RevModPhys.91.045002
https://arxiv.org/abs/1903.10563
http://arxiv.org/abs/1903.10563

[27] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”.
Dec. 13, 2019. arXiv: 1806.07366 [cs, stat]. url: http://arxiv.
org/abs/1806.07366 (visited on 05/12/2020).

[28] Edwin Kah Pin Chong and Stanislaw H. Żak. An Introduction to
Optimization. Fourth edition. Wiley Series in Discrete Mathematics
and Optimization. Hoboken, New Jersey: Wiley, 2013. 622 pp. isbn:
978-1-118-27901-4.

[29] Erick De la Rosa, Wen Yu, and Xiaoou Li. “Nonlinear System Mod-
eling with Deep Neural Networks and Autoencoders Algorithm”. In:
2016 IEEE International Conference on Systems, Man, and Cybernet-
ics (SMC). 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). Budapest, Hungary: IEEE, Oct. 2016, pp. 002157–
002162. isbn: 978-1-5090-1897-0. doi: 10.1109/SMC.2016.7844558.
url: http://ieeexplore.ieee.org/document/7844558/ (visited
on 06/08/2020).

[30] Filipe de Avila Belbute-Peres et al. “End-to-End Differentiable Physics
for Learning and Control”. In: Advances in neural information pro-
cessing systems 31 (2018).

[31] Jonas Degrave et al. “A Differentiable Physics Engine for Deep Learn-
ing in Robotics”. In: Frontiers in Neurorobotics 13 (2019). issn: 1662-
5218. doi: 10 . 3389 / fnbot . 2019 . 00006. url: https : / / www .

frontiersin.org/articles/10.3389/fnbot.2019.00006/full

(visited on 07/09/2020).

[32] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[33] Joachim Denil et al. “The Experiment Model and Validity Frame in
M&S”. In: Proceedings of the Symposium on Theory of Modeling &
Simulation. TMS/DEVS ’17. San Diego, CA, USA: Society for Com-
puter Simulation International, Apr. 23, 2017, pp. 1–12.

[34] Moritz Diehl et al. “Real-Time Optimization and Nonlinear Model
Predictive Control of Processes Governed by Differential-Algebraic
Equations”. In: Journal of Process Control 12.4 (2002), pp. 577–
585. issn: 0959-1524. doi: 10 . 1016 / S0959 - 1524(01) 00023 - 3.
url: https://www.sciencedirect.com/science/article/pii/
S0959152401000233.

95

https://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1109/SMC.2016.7844558
http://ieeexplore.ieee.org/document/7844558/
https://doi.org/10.3389/fnbot.2019.00006
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00006/full
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00006/full
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/S0959-1524(01)00023-3
https://www.sciencedirect.com/science/article/pii/S0959152401000233
https://www.sciencedirect.com/science/article/pii/S0959152401000233

[35] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of
Interpretable Machine Learning. Mar. 2, 2017. doi: 10.48550/arXiv.
1702.08608. arXiv: 1702.08608 [cs, stat]. url: http://arxiv.
org/abs/1702.08608 (visited on 07/06/2023). preprint.

[36] Jan Drgona, Aaron Tuor, and Draguna Vrabie. “Constrained Physics-
Informed Deep Learning for Stable System Identification and Con-
trol of Unknown Linear Systems”. Aug. 17, 2020. arXiv: 2004.11184
[cs, eess]. url: http://arxiv.org/abs/2004.11184 (visited on
08/19/2020).

[37] Ján Drgoňa et al. “All You Need to Know about Model Predictive
Control for Buildings”. In: Annual Reviews in Control 50 (2020),
pp. 190–232. issn: 1367-5788. doi: 10.1016/j.arcontrol.2020.09.
001. url: https://www.sciencedirect.com/science/article/
pii/S1367578820300584.

[38] Poul O Fanger et al. “Thermal Comfort. Analysis and Applications
in Environmental Engineering.” In: Thermal comfort. Analysis and
applications in environmental engineering. (1970).

[39] R. Featherstone and D. Orin. “Robot Dynamics: Equations and Algo-
rithms”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No.00CH37065). Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.00CH37065). Vol. 1. Apr. 2000,
826–834 vol.1. doi: 10.1109/ROBOT.2000.844153.

[40] Joel H. Ferziger, Milovan Perić, and Robert L. Street. Computational
Methods for Fluid Dynamics. Cham: Springer International Publish-
ing, 2020. isbn: 978-3-319-99691-2 978-3-319-99693-6. doi: 10.1007/
978-3-319-99693-6. url: http://link.springer.com/10.1007/
978-3-319-99693-6 (visited on 02/10/2022).

[41] John Fitzgerald et al. “Cyber-Physical Systems Design: Formal Foun-
dations, Methods and Integrated Tool Chains”. In: 2015 IEEE/ACM
3rd FME Workshop on Formal Methods in Software Engineering. 2015
IEEE/ACM 3rd FME Workshop on Formal Methods in Software En-
gineering. May 2015, pp. 40–46. doi: 10.1109/FormaliSE.2015.14.

[42] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feed-
back Control of Dynamic Systems. Eighth edition. Ny, NY: Pearson,
2019. 902 pp. isbn: 978-0-13-468571-7.

96

https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
https://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
https://arxiv.org/abs/2004.11184
https://arxiv.org/abs/2004.11184
http://arxiv.org/abs/2004.11184
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://www.sciencedirect.com/science/article/pii/S1367578820300584
https://www.sciencedirect.com/science/article/pii/S1367578820300584
https://doi.org/10.1109/ROBOT.2000.844153
https://doi.org/10.1007/978-3-319-99693-6
https://doi.org/10.1007/978-3-319-99693-6
http://link.springer.com/10.1007/978-3-319-99693-6
http://link.springer.com/10.1007/978-3-319-99693-6
https://doi.org/10.1109/FormaliSE.2015.14

[43] Jonathan Friedman and Jason Ghidella. “Using Model-Based De-
sign for Automotive Systems Engineering - Requirements Analysis of
the Power Window Example”. In: Transactions Journal of Passenger
Cars: Electronic and Electrical Systems. SAE 2006 World Congress
& Exhibition. Vol. 115. Automotive Systems Engineering. Detroit,
USA: SAE Technical Paper, Apr. 3, 2006, p. 8. isbn: 0148-7191. doi:
10.4271/2006-01-1217.

[44] Ken-ichi Funahashi and Yuichi Nakamura. “Approximation of Dy-
namical Systems by Continuous Time Recurrent Neural Networks”.
In: Neural Networks 6.6 (Jan. 1, 1993), pp. 801–806. issn: 0893-6080.
doi: 10 . 1016 / S0893 - 6080(05) 80125 - X. url: http : / / www .

sciencedirect.com/science/article/pii/S089360800580125X

(visited on 07/19/2020).

[45] Zhiwei Gao, Carlo Cecati, and Steven X. Ding. “A Survey of Fault Di-
agnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With
Model-Based and Signal-Based Approaches”. In: IEEE Transactions
on Industrial Electronics 62.6 (June 2015), pp. 3757–3767. issn: 1557-
9948. doi: 10.1109/TIE.2015.2417501.

[46] Carlos E. Garćıa, David M. Prett, and Manfred Morari. “Model Pre-
dictive Control: Theory and Practice—A Survey”. In: Automatica 25.3
(1989), pp. 335–348. issn: 0005-1098. doi: 10.1016/0005-1098(89)
90002-2. url: https://www.sciencedirect.com/science/article/
pii/0005109889900022.

[47] C W Gear and O Osterby. “Solving Ordinary Differential Equations
with Discontinuities”. In: ACM Trans. Math. Softw. 10.1 (Jan. 1984),
pp. 23–44. issn: 0098-3500. doi: 10 . 1145 / 356068 . 356071. url:
http://doi.acm.org/10.1145/356068.356071.

[48] Neil A. Gershenfeld. The Nature of Mathematical Modeling. Cam-
bridge University Press, 1999. 268 pp. isbn: 978-0-521-57095-4. Google
Books: zYAcGbp17nYC.

[49] Cláudio Gomes et al. “Co-Simulation: A Survey”. In: ACM Computing
Surveys 51 (May 23, 2018). doi: 10.1145/3179993.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[51] Matthias Gries. “Methods for Evaluating and Covering the Design
Space during Early Design Development”. In: Integration 38.2 (Dec. 1,
2004), pp. 131–183. issn: 0167-9260. doi: 10.1016/j.vlsi.2004.

97

https://doi.org/10.4271/2006-01-1217
https://doi.org/10.1016/S0893-6080(05)80125-X
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://www.sciencedirect.com/science/article/pii/S089360800580125X
https://doi.org/10.1109/TIE.2015.2417501
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://doi.org/10.1145/356068.356071
http://doi.acm.org/10.1145/356068.356071
http://books.google.com/books?id=zYAcGbp17nYC
https://doi.org/10.1145/3179993
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001

06.001. url: https://www.sciencedirect.com/science/article/
pii/S016792600400032X (visited on 05/26/2023).

[52] Jiuxiang Gu et al. “Recent Advances in Convolutional Neural Net-
works”. In: Pattern recognition 77 (2018), pp. 354–377.

[53] Ernst Hairer and GerhardWanner. Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems. 14. Springer-Verlag
Berlin Heidelberg, 1996. isbn: 3-540-60452-9.

[54] Charles R. Harris et al. “Array Programming with NumPy”. In: Na-
ture 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-
2649-2. url: https://doi.org/10.1038/s41586-020-2649-2.

[55] L. I. Hatledal et al. “A Language and Platform Independent Co-
Simulation Framework Based on the Functional Mock-Up Interface”.
In: IEEE Access 7 (2019), pp. 109328–109339. issn: 2169-3536. doi:
10.1109/ACCESS.2019.2933275.

[56] Lars Ivar Hatledal, Houxiang Zhang, and Frederic Collonval. “En-
abling Python Driven Co-Simulation Models with PythonFMU.” In:
ECMS. 2020, pp. 235–239.

[57] Kaiming He et al. “Deep Residual Learning for Image Recognition”.
In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2016, pp. 770–778. url: http : / / openaccess .

thecvf . com / content _ cvpr _ 2016 / html / He _ Deep _ Residual _

Learning_CVPR_2016_paper.html (visited on 05/18/2020).

[58] Thomas A. Henzinger and Joseph Sifakis. “The Embedded Systems
Design Challenge”. In: FM 2006: Formal Methods. Ed. by Jayadev
Misra, Tobias Nipkow, and Emil Sekerinski. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2006, pp. 1–15. isbn: 978-
3-540-37216-5. doi: 10.1007/11813040_1.

[59] Tony Hey and Anne Trefethen. “The Fourth Paradigm 10 Years On”.
In: Informatik Spektrum 42.6 (Jan. 1, 2020), pp. 441–447. issn: 1432-
122X. doi: 10.1007/s00287-019-01215-9. url: https://doi.org/
10.1007/s00287-019-01215-9 (visited on 06/28/2023).

[60] Tony Hey et al. The Fourth Paradigm: Data-intensive Scientific Dis-
covery. Microsoft Research, Oct. 2009. isbn: 978-0-9825442-0-4. url:
https://www.microsoft.com/en- us/research/publication/

fourth-paradigm-data-intensive-scientific-discovery/.

98

https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://www.sciencedirect.com/science/article/pii/S016792600400032X
https://www.sciencedirect.com/science/article/pii/S016792600400032X
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ACCESS.2019.2933275
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/s00287-019-01215-9
https://doi.org/10.1007/s00287-019-01215-9
https://doi.org/10.1007/s00287-019-01215-9
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/

[61] Yuanming Hu et al. DiffTaichi: Differentiable Programming for Phys-
ical Simulation. Feb. 14, 2020. doi: 10.48550/arXiv.1910.00935.
arXiv: 1910.00935 [physics, stat]. url: http://arxiv.org/
abs/1910.00935 (visited on 06/12/2023). preprint.

[62] Zhihao Jiang et al. “Closed-Loop Verification of Medical Devices with
Model Abstraction and Refinement”. In: International Journal on
Software Tools for Technology Transfer 16.2 (Apr. 2014), pp. 191–
213. issn: 1433-2787. doi: 10 . 1007 / s10009 - 013 - 0289 - 7. url:
https://doi.org/10.1007/s10009-013-0289-7.

[63] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
“Reinforcement Learning: A Survey”. In: Journal of artificial intelli-
gence research 4 (1996), pp. 237–285.

[64] George Em Karniadakis et al. “Physics-Informed Machine Learning”.
In: Nature Reviews Physics (May 24, 2021), pp. 1–19. issn: 2522-5820.
doi: 10.1038/s42254-021-00314-5. url: https://www.nature.
com/articles/s42254-021-00314-5 (visited on 05/31/2021).

[65] Anuj Karpatne et al. “Theory-Guided Data Science: A New Paradigm
for Scientific Discovery from Data”. In: IEEE Transactions on Knowl-
edge and Data Engineering 29.10 (Oct. 1, 2017), pp. 2318–2331. issn:
1041-4347. doi: 10 . 1109 / TKDE . 2017 . 2720168. url: http : / /

ieeexplore.ieee.org/document/7959606/ (visited on 06/24/2020).

[66] Patrick Kidger. “On Neural Differential Equations”. Feb. 4, 2022.
arXiv: 2202.02435 [cs, math, stat]. url: http://arxiv.org/
abs/2202.02435 (visited on 02/16/2022).

[67] Thomas Kluyver et al. Jupyter Notebooks-a Publishing Format for
Reproducible Computational Workflows. Vol. 2016. 2016.

[68] Ernesto Kofman and Sergio Junco. “Quantized-State Systems: A DEVS
Approach for Continuous System Simulation”. In: Transactions of
The Society for Modeling and Simulation International 18.3 (2001),
pp. 123–132. issn: 0740-6797.

[69] Slawomir Koziel and Anna Pietrenko-Dabrowska. “Basics of Data-
Driven Surrogate Modeling”. In: Performance-Driven Surrogate Mod-
eling of High-Frequency Structures. Cham: Springer International Pub-
lishing, 2020, pp. 23–58. isbn: 978-3-030-38925-3 978-3-030-38926-0.
doi: 10 . 1007 / 978 - 3 - 030 - 38926 - 0 _ 2. url: http : / / link .

springer . com / 10 . 1007 / 978 - 3 - 030 - 38926 - 0 _ 2 (visited on
12/10/2020).

99

https://doi.org/10.48550/arXiv.1910.00935
https://arxiv.org/abs/1910.00935
http://arxiv.org/abs/1910.00935
http://arxiv.org/abs/1910.00935
https://doi.org/10.1007/s10009-013-0289-7
https://doi.org/10.1007/s10009-013-0289-7
https://doi.org/10.1038/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
https://doi.org/10.1109/TKDE.2017.2720168
http://ieeexplore.ieee.org/document/7959606/
http://ieeexplore.ieee.org/document/7959606/
https://arxiv.org/abs/2202.02435
http://arxiv.org/abs/2202.02435
http://arxiv.org/abs/2202.02435
https://doi.org/10.1007/978-3-030-38926-0_2
http://link.springer.com/10.1007/978-3-030-38926-0_2
http://link.springer.com/10.1007/978-3-030-38926-0_2

[70] R. Kübler and W. Schiehlen. “Two Methods of Simulator Coupling”.
In: Mathematical and Computer Modelling of Dynamical Systems 6.2
(June 1, 2000), pp. 93–113. issn: 1387-3954. doi: 10.1076/1387-
3954(200006)6:2;1-M;FT093. url: https://www.tandfonline.
com/doi/abs/10.1076/1387- 3954%28200006%296%3A2%3B1-

M%3BFT093 (visited on 03/24/2021).

[71] Vladimir Kvrgic and Jelena Vidakovic. “Efficient Method for Robot
Forward Dynamics Computation”. In: Mechanism and Machine The-
ory 145 (Mar. 1, 2020), p. 103680. issn: 0094-114X. doi: 10.1016/j.
mechmachtheory.2019.103680. url: https://www.sciencedirect.
com/science/article/pii/S0094114X19322864 (visited on 05/23/2023).

[72] Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. “Derivative-
Free Optimization Methods”. In: Acta Numerica 28 (May 1, 2019),
pp. 287–404. issn: 0962-4929, 1474-0508. doi: 10.1017/S0962492919000060.
arXiv: 1904.11585 [math]. url: http://arxiv.org/abs/1904.
11585 (visited on 06/26/2023).

[73] Alexander Lavin et al. Simulation Intelligence: Towards a New Gen-
eration of Scientific Methods. Nov. 27, 2022. doi: 10.48550/arXiv.
2112.03235. arXiv: 2112.03235 [cs]. url: http://arxiv.org/
abs/2112.03235 (visited on 07/19/2023). preprint.

[74] Y. Lecun et al. “Gradient-Based Learning Applied to Document Recog-
nition”. In: Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.
issn: 1558-2256. doi: 10.1109/5.726791.

[75] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In:
2008 11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC). 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC). May 2008, pp. 363–369. doi:
10.1109/ISORC.2008.25.

[76] Christian Legaard et al. “Constructing Neural Network Based Mod-
els for Simulating Dynamical Systems”. In: ACM Computing Surveys
55.11 (Nov. 30, 2023), pp. 1–34. issn: 0360-0300, 1557-7341. doi: 10.
1145/3567591. url: https://dl.acm.org/doi/10.1145/3567591
(visited on 02/27/2023).

[77] Ian Lenz, Ross Knepper, and Ashutosh Saxena. “DeepMPC: Learning
Deep Latent Features for Model Predictive Control”. In: Proceedings
of Robotics: Science and Systems. Rome, Italy, July 2015. doi: 10.
15607/RSS.2015.XI.012.

100

https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://www.tandfonline.com/doi/abs/10.1076/1387-3954%28200006%296%3A2%3B1-M%3BFT093
https://www.tandfonline.com/doi/abs/10.1076/1387-3954%28200006%296%3A2%3B1-M%3BFT093
https://www.tandfonline.com/doi/abs/10.1076/1387-3954%28200006%296%3A2%3B1-M%3BFT093
https://doi.org/10.1016/j.mechmachtheory.2019.103680
https://doi.org/10.1016/j.mechmachtheory.2019.103680
https://www.sciencedirect.com/science/article/pii/S0094114X19322864
https://www.sciencedirect.com/science/article/pii/S0094114X19322864
https://doi.org/10.1017/S0962492919000060
https://arxiv.org/abs/1904.11585
http://arxiv.org/abs/1904.11585
http://arxiv.org/abs/1904.11585
https://doi.org/10.48550/arXiv.2112.03235
https://doi.org/10.48550/arXiv.2112.03235
https://arxiv.org/abs/2112.03235
http://arxiv.org/abs/2112.03235
http://arxiv.org/abs/2112.03235
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1145/3567591
https://doi.org/10.1145/3567591
https://dl.acm.org/doi/10.1145/3567591
https://doi.org/10.15607/RSS.2015.XI.012
https://doi.org/10.15607/RSS.2015.XI.012

[78] Sihan Li et al. Demystifying ResNet. May 20, 2017. doi: 10.48550/
arXiv.1611.01186. arXiv: 1611.01186 [cs, stat]. url: http:
//arxiv.org/abs/1611.01186 (visited on 07/18/2023). preprint.

[79] Lennart Ljung. “Perspectives on System Identification”. In: IFAC
Proceedings Volumes. 17th IFAC World Congress 41.2 (Jan. 1, 2008),
pp. 7172–7184. issn: 1474-6670. doi: 10.3182/20080706- 5- KR-
1001 . 01215. url: http : / / www . sciencedirect . com / science /
article/pii/S1474667016400984 (visited on 06/21/2020).

[80] Lennart Ljung. System Identification (2nd Ed.): Theory for the User.
USA: Prentice Hall PTR, 1999. 609 pp. isbn: 978-0-13-656695-3.

[81] Matthias Lorenzen, Mark Cannon, and Frank Allgöwer. “Robust MPC
with Recursive Model Update”. In: Automatica 103 (May 1, 2019),
pp. 461–471. issn: 0005-1098. doi: 10.1016/j.automatica.2019.
02.023. url: https://www.sciencedirect.com/science/article/
pii/S0005109819300731 (visited on 06/12/2023).

[82] Frank D Maćıas-Escrivá et al. “Self-Adaptive Systems: A Survey of
Current Approaches, Research Challenges and Applications”. In: Ex-
pert Systems with Applications 40.18 (2013), pp. 7267–7279.

[83] H. Madsen and J. Holst. “Estimation of Continuous-Time Models for
the Heat Dynamics of a Building”. In: Energy and Buildings 22.1
(Mar. 1, 1995), pp. 67–79. issn: 0378-7788. doi: 10.1016/0378-
7788(94)00904-X. url: https://www.sciencedirect.com/science/
article/pii/037877889400904X (visited on 03/14/2023).

[84] Map of Control. Engineering Media. url: https://engineeringmedia.
com/map-of-control (visited on 06/21/2023).

[85] J. E. Marsden and M. West. “Discrete Mechanics and Variational In-
tegrators”. In: Acta Numerica 10 (May 2001), pp. 357–514. issn: 0962-
4929, 1474-0508. doi: 10.1017/S096249290100006X. url: https://
www.cambridge.org/core/product/identifier/S096249290100006X/

type/journal_article (visited on 02/20/2020).

[86] Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. “Reduced-
Order Modeling of Advection-Dominated Systems with Recurrent Neu-
ral Networks and Convolutional Autoencoders”. In: Physics of Fluids
33.3 (Mar. 1, 2021), p. 037106. issn: 1070-6631. doi: 10.1063/5.
0039986. url: https://aip.scitation.org/doi/full/10.1063/
5.0039986 (visited on 12/09/2021).

101

https://doi.org/10.48550/arXiv.1611.01186
https://doi.org/10.48550/arXiv.1611.01186
https://arxiv.org/abs/1611.01186
http://arxiv.org/abs/1611.01186
http://arxiv.org/abs/1611.01186
https://doi.org/10.3182/20080706-5-KR-1001.01215
https://doi.org/10.3182/20080706-5-KR-1001.01215
http://www.sciencedirect.com/science/article/pii/S1474667016400984
http://www.sciencedirect.com/science/article/pii/S1474667016400984
https://doi.org/10.1016/j.automatica.2019.02.023
https://doi.org/10.1016/j.automatica.2019.02.023
https://www.sciencedirect.com/science/article/pii/S0005109819300731
https://www.sciencedirect.com/science/article/pii/S0005109819300731
https://doi.org/10.1016/0378-7788(94)00904-X
https://doi.org/10.1016/0378-7788(94)00904-X
https://www.sciencedirect.com/science/article/pii/037877889400904X
https://www.sciencedirect.com/science/article/pii/037877889400904X
https://engineeringmedia.com/map-of-control
https://engineeringmedia.com/map-of-control
https://doi.org/10.1017/S096249290100006X
https://www.cambridge.org/core/product/identifier/S096249290100006X/type/journal_article
https://www.cambridge.org/core/product/identifier/S096249290100006X/type/journal_article
https://www.cambridge.org/core/product/identifier/S096249290100006X/type/journal_article
https://doi.org/10.1063/5.0039986
https://doi.org/10.1063/5.0039986
https://aip.scitation.org/doi/full/10.1063/5.0039986
https://aip.scitation.org/doi/full/10.1063/5.0039986

[87] Aaron Meurer et al. “SymPy: Symbolic Computing in Python”. In:
PeerJ Computer Science 3 (Jan. 2017), e103. issn: 2376-5992. doi:
10.7717/peerj-cs.103. url: https://doi.org/10.7717/peerj-
cs.103.

[88] Mehrdad Moradi et al. “Optimizing Fault Injection in FMI Co-simulation”.
In: Proceedings of the 2019 Summer Simulation Conference. Berlin,
Germany: Society for Computer Simulation International, 2019, p. 12.
doi: 10.5555/3374138.3374170.

[89] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012. isbn: 0-262-01802-0.

[90] Claus Ballegaard Nielsen et al. “Systems of Systems Engineering:
Basic Concepts, Model-Based Techniques, and Research Directions”.
In: ACM Computing Surveys 48.2 (Sept. 24, 2015), 18:1–18:41. issn:
0360-0300. doi: 10.1145/2794381. url: https://doi.org/10.
1145/2794381 (visited on 06/21/2020).

[91] Frank Noé et al. “Machine Learning for Molecular Simulation”. In:
Annual Review of Physical Chemistry 71.1 (2020), pp. 361–390. doi:
10.1146/annurev-physchem-042018-052331. pmid: 32092281. url:
https://doi.org/10.1146/annurev-physchem-042018-052331

(visited on 09/02/2020).

[92] Shimon Y. Nof, ed. Handbook of Industrial Robotics. 2nd ed. New
York: John Wiley, 1999. 1348 pp. isbn: 978-0-471-17783-8.

[93] Katharina Ott et al. “When Are Neural ODE Solutions Proper ODEs?”
July 30, 2020. arXiv: 2007.15386 [cs, stat]. url: http://arxiv.
org/abs/2007.15386 (visited on 09/08/2020).

[94] Papers with Code - Browse the State-of-the-Art in Machine Learning.
url: https://paperswithcode.com/sota (visited on 07/01/2023).

[95] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Process-
ing Systems. Vol. 32. Curran Associates, Inc., 2019. url: https://
proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-

Abstract.html (visited on 02/27/2023).

[96] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–
2830.

102

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.5555/3374138.3374170
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381
https://doi.org/10.1146/annurev-physchem-042018-052331
32092281
https://doi.org/10.1146/annurev-physchem-042018-052331
https://arxiv.org/abs/2007.15386
http://arxiv.org/abs/2007.15386
http://arxiv.org/abs/2007.15386
https://paperswithcode.com/sota
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[97] Ludovic Pintard et al. “Fault Injection in the Automotive Standard
ISO 26262: An Initial Approach”. In: Dependable Computing. Ed. by
Marco Vieira et al. Vol. 7869. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 126–133. isbn: 978-3-642-38788-3 978-3-642-38789-
0. doi: 10.1007/978-3-642-38789-0_11. url: http://link.
springer . com / 10 . 1007 / 978 - 3 - 642 - 38789 - 0 _ 11 (visited on
03/05/2019).

[98] Alessio Plebe and Giorgio Grasso. “The Unbearable Shallow Under-
standing of Deep Learning”. In: Minds and Machines 29.4 (Dec. 1,
2019), pp. 515–553. issn: 1572-8641. doi: 10.1007/s11023- 019-
09512-8. url: https://doi.org/10.1007/s11023-019-09512-8
(visited on 12/07/2020).

[99] Andrei D Polyanin and Valentin F Zaitsev. Handbook of Ordinary
Differential Equations: Exact Solutions, Methods, and Problems. CRC
Press, 2017.

[100] William H. Press. Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge University Press, Sept. 6, 2007. 1195 pp. isbn:
978-0-521-88068-8. Google Books: 1aAOdzK3FegC.

[101] Alfio Quarteroni and Gianluigi Rozza, eds. Reduced Order Methods
for Modeling and Computational Reduction. Cham: Springer Interna-
tional Publishing, 2014. isbn: 978-3-319-02089-1 978-3-319-02090-7.
doi: 10.1007/978-3-319-02090-7. url: http://link.springer.
com/10.1007/978-3-319-02090-7 (visited on 03/22/2023).

[102] Christopher Rackauckas et al. “Universal Differential Equations for
Scientific Machine Learning”. Aug. 6, 2020. arXiv: 2001.04385 [cs,

math, q-bio, stat]. url: http://arxiv.org/abs/2001.04385
(visited on 09/07/2020).

[103] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-Informed
Neural Networks: A Deep Learning Framework for Solving Forward
and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions”. In: Journal of Computational Physics 378 (Feb. 1, 2019), pp. 686–
707. issn: 0021-9991. doi: 10.1016/j.jcp.2018.10.045. url: http:
//www.sciencedirect.com/science/article/pii/S0021999118307125

(visited on 08/19/2020).

[104] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. “Hidden
Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Vi-
sualizations”. In: Science (New York, N.Y.) 367.6481 (Feb. 28, 2020),
pp. 1026–1030. issn: 0036-8075, 1095-9203. doi: 10.1126/science.

103

https://doi.org/10.1007/978-3-642-38789-0_11
http://link.springer.com/10.1007/978-3-642-38789-0_11
http://link.springer.com/10.1007/978-3-642-38789-0_11
https://doi.org/10.1007/s11023-019-09512-8
https://doi.org/10.1007/s11023-019-09512-8
https://doi.org/10.1007/s11023-019-09512-8
http://books.google.com/books?id=1aAOdzK3FegC
https://doi.org/10.1007/978-3-319-02090-7
http://link.springer.com/10.1007/978-3-319-02090-7
http://link.springer.com/10.1007/978-3-319-02090-7
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
http://arxiv.org/abs/2001.04385
https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741

aaw4741. pmid: 32001523. url: https://science.sciencemag.
org/content/367/6481/1026 (visited on 05/18/2020).

[105] Luis Miguel Rios and Nikolaos V. Sahinidis. “Derivative-Free Opti-
mization: A Review of Algorithms and Comparison of Software Imple-
mentations”. In: Journal of Global Optimization 56.3 (July 1, 2013),
pp. 1247–1293. issn: 1573-2916. doi: 10.1007/s10898-012-9951-y.
url: https://doi.org/10.1007/s10898-012-9951-y (visited on
06/26/2023).

[106] Stewart Robinson. Simulation: The Practice of Model Development
and Use. Second edition. Houndmills, Basingstoke, Hampshire, UK ;
New York, NY: Palgrave Macmillan, 2014. 367 pp. isbn: 978-1-137-
32802-1.

[107] Ribana Roscher et al. “Explainable Machine Learning for Scientific
Insights and Discoveries”. In: IEEE access : practical innovations,
open solutions 8 (2020), pp. 42200–42216. issn: 2169-3536. doi: 10.
1109/ACCESS.2020.2976199. arXiv: 1905.08883. url: http://
arxiv.org/abs/1905.08883 (visited on 09/01/2020).

[108] Simon Rouchier, Mickaël Rabouille, and Pierre Oberlé. “Calibration
of Simplified Building Energy Models for Parameter Estimation and
Forecasting: Stochastic versus Deterministic Modelling”. In: Building
and Environment 134 (Apr. 15, 2018), pp. 181–190. issn: 0360-1323.
doi: 10.1016/j.buildenv.2018.02.043. url: https://www.
sciencedirect.com/science/article/pii/S036013231830115X

(visited on 03/14/2023).

[109] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition
Challenge. Jan. 29, 2015. doi: 10.48550/arXiv.1409.0575. arXiv:
1409.0575 [cs]. url: http://arxiv.org/abs/1409.0575 (visited
on 07/18/2023). preprint.

[110] RD Russell and Lawerence F Shampine. “A Collocation Method for
Boundary Value Problems”. In: Numerische Mathematik 19 (1972),
pp. 1–28.

[111] Tim Salzmann et al. “Real-Time Neural MPC: Deep Learning Model
Predictive Control for Quadrotors and Agile Robotic Platforms”. In:
IEEE Robotics and Automation Letters 8.4 (Apr. 2023), pp. 2397–
2404. issn: 2377-3766. doi: 10.1109/LRA.2023.3246839.

104

https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
32001523
https://science.sciencemag.org/content/367/6481/1026
https://science.sciencemag.org/content/367/6481/1026
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://arxiv.org/abs/1905.08883
http://arxiv.org/abs/1905.08883
http://arxiv.org/abs/1905.08883
https://doi.org/10.1016/j.buildenv.2018.02.043
https://www.sciencedirect.com/science/article/pii/S036013231830115X
https://www.sciencedirect.com/science/article/pii/S036013231830115X
https://doi.org/10.48550/arXiv.1409.0575
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1109/LRA.2023.3246839

[112] Masa-aki Sato and Yoshihiko Murakami. “Learning Nonlinear Dynam-
ics by Recurrent Neural”. In: Some Problems on the Theory of Dy-
namical Systems in Applied Sciences-Proceedings of the Symposium.
Vol. 10. 1991, p. 49.

[113] Klaus Schittkowski. Numerical Data Fitting in Dynamical Systems: A
Practical Introduction with Applications and Software. Vol. 77. Springer
Science & Business Media, 2002.

[114] Dieter Schramm, Wildan Lalo, and Michael Unterreiner. “Applica-
tion of Simulators and Simulation Tools for the Functional Design
of Mechatronic Systems”. In: Solid State Phenomena 166–167 (Sept.
2010), pp. 1–14. issn: 1662-9779. doi: 10.4028/www.scientific.
net/SSP.166-167.1. url: http://www.scientific.net/SSP.166-
167.1.

[115] D.R. Seidl and R.D. Lorenz. “A Structure by Which a Recurrent
Neural Network Can Approximate a Nonlinear Dynamic System”.
In: IJCNN-91-Seattle International Joint Conference on Neural Net-
works. IJCNN-91-Seattle International Joint Conference on Neural
Networks. Vol. ii. July 1991, 709–714 vol.2. doi: 10.1109/IJCNN.
1991.155422.

[116] B. Sohlberg and E.W. Jacobsen. “GREY BOXMODELLING – BRANCHES
AND EXPERIENCES”. In: IFAC Proceedings Volumes 41.2 (2008),
pp. 11415–11420. issn: 14746670. doi: 10.3182/20080706-5-KR-
1001.01934. url: https://linkinghub.elsevier.com/retrieve/
pii/S1474667016408025 (visited on 05/12/2020).

[117] Space Cooling – Analysis. IEA. url: https://www.iea.org/reports/
space-cooling (visited on 03/13/2023).

[118] Shlomo Sternberg. Dynamical Systems. Mineola, N.Y: Dover Publica-
tions, 2010. 265 pp. isbn: 978-0-486-47705-3.

[119] Hyung Ju Suh et al. “Do Differentiable Simulators Give Better Pol-
icy Gradients?” In: Proceedings of the 39th International Conference
on Machine Learning. International Conference on Machine Learning.
PMLR, June 28, 2022, pp. 20668–20696. url: https://proceedings.
mlr.press/v162/suh22b.html (visited on 06/18/2023).

[120] Makoto Takamoto et al. PDEBENCH: An Extensive Benchmark for
Scientific Machine Learning. Mar. 13, 2023. doi: 10.48550/arXiv.
2210.07182. arXiv: 2210.07182 [physics]. url: http://arxiv.
org/abs/2210.07182 (visited on 07/19/2023). preprint.

105

https://doi.org/10.4028/www.scientific.net/SSP.166-167.1
https://doi.org/10.4028/www.scientific.net/SSP.166-167.1
http://www.scientific.net/SSP.166-167.1
http://www.scientific.net/SSP.166-167.1
https://doi.org/10.1109/IJCNN.1991.155422
https://doi.org/10.1109/IJCNN.1991.155422
https://doi.org/10.3182/20080706-5-KR-1001.01934
https://doi.org/10.3182/20080706-5-KR-1001.01934
https://linkinghub.elsevier.com/retrieve/pii/S1474667016408025
https://linkinghub.elsevier.com/retrieve/pii/S1474667016408025
https://www.iea.org/reports/space-cooling
https://www.iea.org/reports/space-cooling
https://proceedings.mlr.press/v162/suh22b.html
https://proceedings.mlr.press/v162/suh22b.html
https://doi.org/10.48550/arXiv.2210.07182
https://doi.org/10.48550/arXiv.2210.07182
https://arxiv.org/abs/2210.07182
http://arxiv.org/abs/2210.07182
http://arxiv.org/abs/2210.07182

[121] This Is Python Version 3.12.0 Alpha 6. Python, Mar. 9, 2023. url:
https://github.com/python/cpython (visited on 03/09/2023).

[122] Nils Thuerey et al. “Physics-Based Deep Learning”. Sept. 11, 2021.
arXiv: 2109.05237 [physics]. url: http://arxiv.org/abs/2109.
05237 (visited on 09/30/2021).

[123] Tobias Thummerer, Lars Mikelsons, and Josef Kircher. “NeuralFMU:
Towards Structural Integration of FMUs into Neural Networks”. In:
14th Modelica Conference 2021. Sept. 27, 2021, pp. 297–306. doi:
10.3384/ecp21181297. url: https://ecp.ep.liu.se/index.php/
modelica/article/view/207 (visited on 05/26/2023).

[124] Tools — Functional Mock-up Interface. url: https://fmi-standard.
org/tools/ (visited on 06/26/2023).

[125] Martin Törngren and Ulf Sellgren. “Complexity Challenges in Devel-
opment of Cyber-Physical Systems”. In: Principles of Modeling: Es-
says Dedicated to Edward A. Lee on the Occasion of His 60th Birthday.
Ed. by Marten Lohstroh, Patricia Derler, and Marjan Sirjani. Lecture
Notes in Computer Science. Cham: Springer International Publishing,
2018, pp. 478–503. isbn: 978-3-319-95246-8. doi: 10.1007/978-3-
319-95246-8_27. url: https://doi.org/10.1007/978-3-319-
95246-8_27 (visited on 03/12/2023).

[126] Hans Vangheluwe, Juan De Lara, and Pieter J. Mosterman. “An In-
troduction to Multi-Paradigm Modelling and Simulation”. In: Pro-
ceedings of the AIS’2002 Conference (AI, Simulation and Planning in
High Autonomy Systems), Lisboa, Portugal. Vol. 21. 1. 2002.

[127] Arun Verma. “An Introduction to Automatic Differentiation”. In:
Current Science 78.7 (2000), pp. 804–807. issn: 0011-3891. JSTOR:
24103956. url: https://www.jstor.org/stable/24103956 (visited
on 02/26/2023).

[128] Laura von Rueden et al. “Combining Machine Learning and Sim-
ulation to a Hybrid Modelling Approach: Current and Future Di-
rections”. In: Advances in Intelligent Data Analysis XVIII. Ed. by
Michael R. Berthold, Ad Feelders, and Georg Krempl. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2020,
pp. 548–560. isbn: 978-3-030-44584-3. doi: 10.1007/978-3-030-
44584-3_43.

106

https://github.com/python/cpython
https://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2109.05237
https://doi.org/10.3384/ecp21181297
https://ecp.ep.liu.se/index.php/modelica/article/view/207
https://ecp.ep.liu.se/index.php/modelica/article/view/207
https://fmi-standard.org/tools/
https://fmi-standard.org/tools/
https://doi.org/10.1007/978-3-319-95246-8_27
https://doi.org/10.1007/978-3-319-95246-8_27
https://doi.org/10.1007/978-3-319-95246-8_27
https://doi.org/10.1007/978-3-319-95246-8_27
http://www.jstor.org/stable/24103956
https://www.jstor.org/stable/24103956
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1007/978-3-030-44584-3_43

[129] Laura von Rueden et al. “Informed Machine Learning – A Taxon-
omy and Survey of Integrating Prior Knowledge into Learning Sys-
tems”. In: IEEE Transactions on Knowledge and Data Engineering
35.1 (Jan. 2023), pp. 614–633. issn: 1558-2191. doi: 10.1109/TKDE.
2021.3079836.

[130] Sifan Wang, Yujun Teng, and Paris Perdikaris. “Understanding and
Mitigating Gradient Pathologies in Physics-Informed Neural Networks”.
Jan. 13, 2020. arXiv: 2001.04536 [cs, math, stat]. url: http:
//arxiv.org/abs/2001.04536 (visited on 03/17/2021).

[131] Sifan Wang, Xinling Yu, and Paris Perdikaris. “When andWhy PINNs
Fail to Train: A Neural Tangent Kernel Perspective”. July 28, 2020.
arXiv: 2007.14527 [cs, math, stat]. url: http://arxiv.org/
abs/2007.14527 (visited on 03/17/2021).

[132] G. Wanner and E. Hairer. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer S. Vol. 1. Springer-Verlag, 1991.

[133] Bernard P. Zeigler, Alexandre Muzy, and Ernesto Kofman. Theory of
Modeling and Simulation: Discrete Event and Iterative System Com-
putational Foundations. 3rd ed. San Diego (Calif.): Academic Press,
2019. isbn: 978-0-12-813370-5.

[134] Xuan Zhang et al. Artificial Intelligence for Science in Quantum,
Atomistic, and Continuum Systems. July 17, 2023. doi: 10.48550/
arXiv.2307.08423. arXiv: 2307.08423 [physics]. url: http://
arxiv.org/abs/2307.08423 (visited on 07/21/2023). preprint.

[135] Yinhao Zhu et al. “Physics-Constrained Deep Learning for High-Dimensional
Surrogate Modeling and Uncertainty Quantification without Labeled
Data”. In: Journal of Computational Physics 394 (Oct. 1, 2019),
pp. 56–81. issn: 0021-9991. doi: 10.1016/j.jcp.2019.05.024.
url: http://www.sciencedirect.com/science/article/pii/
S0021999119303559 (visited on 05/18/2020).

107

https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2001.04536
https://arxiv.org/abs/2007.14527
http://arxiv.org/abs/2007.14527
http://arxiv.org/abs/2007.14527
https://doi.org/10.48550/arXiv.2307.08423
https://doi.org/10.48550/arXiv.2307.08423
https://arxiv.org/abs/2307.08423
http://arxiv.org/abs/2307.08423
http://arxiv.org/abs/2307.08423
https://doi.org/10.1016/j.jcp.2019.05.024
http://www.sciencedirect.com/science/article/pii/S0021999119303559
http://www.sciencedirect.com/science/article/pii/S0021999119303559

Part II

Publications

108

Chapter 6

Constructing Neural Network
Based Models for Simulating
Dynamical Systems

The paper presented in this chapter has been published in the peer-reviewed
journal ACM Computing Surveys.

109

236

Constructing Neural Network Based Models for Simulating
Dynamical Systems

CHRISTIAN LEGAARD, Aarhus University
THOMAS SCHRANZ and GERALD SCHWEIGER, TU Graz
JÁN DRGOŇA, Pacific Northwest National Laboratory
BASAK FALAY, AEE–Institute for Sustainable Technologies
CLÁUDIO GOMES, ALEXANDROS IOSIFIDIS, MAHDI ABKAR, and
PETER LARSEN, Aarhus University

Dynamical systems see widespread use in natural sciences like physics, biology, and chemistry, as well as en-
gineering disciplines such as circuit analysis, computational fluid dynamics, and control. For simple systems,
the differential equations governing the dynamics can be derived by applying fundamental physical laws.
However, for more complex systems, this approach becomes exceedingly difficult. Data-driven modeling is
an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations
of the true system. In recent years, there has been an increased interest in applying data-driven modeling
techniques to solve a wide range of problems in physics and engineering. This article provides a survey of
the different ways to construct models of dynamical systems using neural networks. In addition to the basic
overview, we review the related literature and outline the most significant challenges from numerical simula-
tions that this modeling paradigm must overcome. Based on the reviewed literature and identified challenges,
we provide a discussion on promising research areas.

CCS Concepts: • Computing methodologies → Neural networks; Continuous simulation; Continu-
ous models; Supervised learning by regression; • Applied computing→ Physics; Engineering;

Additional Key Words and Phrases: Neural ODEs, physics-informed neural networks, physics-based
regularization

We acknowledge the Poul Due Jensen Foundation for funding the project Digital Twins for Cyber-Physical Systems
(DiT4CPS) and Legaard would also like to acknowledge partial support from the MADE Digital project.
This research was supported by the Data Model Convergence (DMC) initiative via the Laboratory Directed Research
and Development (LDRD) investments at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program
national laboratory operated for the U.S. Department of Energy (DoE) by Battelle Memorial Institute under Contract No.
DE-AC05-76RL0-1830.
The Digital Twins for Cyber-Physical Systems (DiT4CPS) project was funded by the Poul Due Jensen Foundation. C.
Legaard received partial support from the MADE Digital project. This research was supported by the Data Model Conver-
gence (DMC) initiative via the Laboratory Directed Research and Development (LDRD) investments at Pacific Northwest
National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy
(DoE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL0-1830.
Authors’ addresses: C. Legaard, C. Gomes, A. Iosifidis, M. Abkar, and P. Larsen, Aarhus University, Aarhus, Denmark;
emails: {cml, claudio.gomes, ai}@ece.au.dk, abkar@mpe.au.dk, pgl@ece.au.dk; T. Schranz and G. Schweiger, TU Graz, Graz,
Austria; emails: {thomas.schranz, gerald.schweiger}@tugraz.at; J. Drgoňa, Pacific Northwest National Laboratory, Rich-
land, WA; email: jan.drgona@pnnl.gov; B. Falay, AEE–Institute for Sustainable Technologies, Gleisdorf, Austria; email:
b.falay@aee.at.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2023/02-ART236 $15.00
https://doi.org/10.1145/3567591

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:2 C. Legaard et al.

ACM Reference format:
Christian Legaard, Thomas Schranz, Gerald Schweiger, Ján Drgoňa, Basak Falay, Cláudio Gomes, Alexandros
Iosifidis, Mahdi Abkar, and Peter Larsen. 2023. Constructing Neural Network Based Models for Simulating
Dynamical Systems. ACM Comput. Surv. 55, 11, Article 236 (February 2023), 34 pages.
https://doi.org/10.1145/3567591

1 INTRODUCTION
Mathematical models are fundamental tools for building an understanding of the physical phe-
nomena observed in nature [13]. Not only do these models allow us to predict what the future
may look like, but they also allow us to develop an understanding of what causes the observed
behavior. In engineering, models are used to improve the system design [33, 118], design optimal
control policy [23, 25, 35], simulate faults [84, 94], forecast future behavior [122], or assess the
desired operational performance [51].

The focus of this survey is on the type of models that allow us to predict how a physical system
evolves over time for a given set of conditions. Dynamical systems theory provides an essential set
of tools for formalizing and studying the dynamics of this type of model. However, when study-
ing complex physical phenomena, it becomes increasingly difficult to derive models by hand that
strike an acceptable balance between accuracy and speed. This has led to the development of fields
that are concerned with creating models directly from data such as system identification [76, 87],
machine learning (ML) [9, 85], and, more recently, deep learning (DL) [40].

In recent years, the interest in DL has increased rapidly, as is evident from the volume of research
being published on the topic [95]. The exact causes behind the success of neural networks (NNs)
are hard to pinpoint. Some claim that practical factors like the availability of large quantities of
data, user-friendly software frameworks [1, 93], and specialized hardware [82] are the main cause
for its success, whereas others claim that the success of NNs can be attributed to their structure
being well suited to solving a wide variety of problems [95].

The goal of this survey is to provide a practical guide on how to construct models of dynamical
systems using NNs as primary building blocks. We do this by walking the reader through the most
important classes of models found in the literature, for many of which we provide an example
implementation. We put special emphasis on the process for training the models, since it differs
significantly from traditional applications of DL that do not consider evolution over time. More
specifically, we describe how to split the trajectories used during training, and we introduce opti-
mization criteria suitable for simulation. After training, it is necessary to validate that the model is
a good representation of the true system. Like other data-driven models, we determine the validity
empirically by using a separate set of trajectories for validation. We introduce some of the most
important properties and how they can be verified.

It should be emphasized that the type of model we wish to construct should allow us to obtain
a simulation of the system. Rather than providing a formal definition of simulation, we refer to
Figure 1, which shows several topics related to simulation that are not covered in this article.

The source code and instructions for running the experiments can be accessed at GitHub.1

1.1 Related Surveys
We provide an overview of existing surveys related to our work. Then we compare our work with
these surveys and describe the structure of the remainder of the article.

1https://github.com/clegaard/deep_learning_for_dynamical_systems.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:3

Fig. 1. Simulation and related application areas where ML techniques are commonly applied. The focus of
the survey is exclusively on techniques that can generate a simulation based on an initial condition, as
shown in the top left. Although interesting on their own, topics other than simulation are not covered by the
survey. Filtering refers to applications where a sliding window over past observations is used to predict the
next sample or some other quantity of interest. Classification refers to applications where a model takes a
sequence of observations and produces a categorical label, for instance, indicating that the system is in an
abnormal state. Control refers to applications where a NN-based controller is used to drive the system to a
desired state. Discovering Equations refers to techniques based on ML that aim to discover the underlying
equations of the system. Quantity of Interest refers to applications where an NN is used to provide a mapping
from an initial condition to some quantity of interest, such as the steady-state of the system.

Application Domain. The broader topic of using ML in scientific fields has received widespread
attention within several application domains [11, 12, 19, 108]. These review papers commonly
focus on providing an overview of the prospective use cases of ML within their domains but put
limited emphasis on how to apply the techniques in practice.

Surrogate Modeling. The field of surrogate modeling—that is, the theory and techniques used to
produce faster models—is intimately related to the field of simulation with NNs. So it is important
that we highlight some surveys in this field. The work of Koziel and Pietrenko-Dabrowska [61]
presents a thorough introduction to data-driven surrogate modeling, which encompasses the use
of NNs. Viana et al. [127] summarize advanced and yet simple statistical tools commonly used in
the design automation community: (i) screening and variable reduction in both the input and the
output spaces, (ii) simultaneous use of multiple surrogates, (iii) sequential sampling and optimiza-
tion, and (iv) conservative estimators. Since optimization is an important use case of surrogate
modeling, Forrester and Keane [31] reviewed advances in surrogate modeling in this field. Finally,
with a focus on applications to water resources and building simulation, we highlight the work of
Razavi et al. [105] and Westermann and Evins [135].

Prior Knowledge. One of the major trends to address some challenges arising in NN-based simu-
lation is to encode prior knowledge such as physical constraints into the network itself or during
the training process, ensuring the trained network is physically consistent. The work of Kelly
et al. [54] coins this theory-guided data science and provides several examples of how knowledge

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:4 C. Legaard et al.

Fig. 2. A mind map of the topics and model types covered in the survey.

may be incorporated in practice. Closely related to this is the work of Rai and Sahu [100] and von
Rueden et al. [128, 129], which propose a detailed taxonomy describing the various paths through
which knowledge can be incorporated into a NN model.

Comparison with This Survey. Our work complements the preceding surveys by providing an
in-depth review focused specifically on NNs rather than ML as a whole. The concrete example
helps the reader’s understanding and highlights the similarities and inherent deficiencies of each
approach.

We also outline the inherent challenges of simulation and establish a relationship between nu-
merical simulation challenges and DL-based simulation challenges. The benefit of our approach
is that the reader gets the intuition behind some approaches used to incorporate knowledge into
the NNs. For instance, we relate energy-conserving numerical solvers to Hamiltonian NNs, whose
goal is to encode energy conservation, and we discuss concepts such as numerical stability and
solver convergence, which are crucial in long-term prediction using NNs.

1.2 Survey Structure
The remainder of the article is structured according to the mind map shown in Figure 2.
First, Section 2 introduces the central concepts of dynamical systems, numerical solvers, and
NNs. In addition, the section proposes a taxonomy describing the fundamental differences of
how models can be constructed using NNs. The following two sections are dedicated to de-
scribing the two classes of models identified in the taxonomy: direct-solution models and time-
stepper models in Sections 3 and 4, respectively. For each of the two categories, we describe the
following:
• The structure of the model and the mechanism used to produce simulations of a system
• How the parameters are tuned to match the behavior of the true system
• Key challenges and extensions of the model designed to address them

Following this, Section 5 discusses the advantages and limitations of the two distinct model types
and outlines future research directions. Finally, Section 6 provides a brief summary of the contri-
butions of the article and the outlined research directions.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:5

Fig. 3. The ideal pendulum system used as a case study throughout the article. The pendulum is character-
ized by an angle, θ , and an angular velocity, ω.

2 BACKGROUND
Models are an integral tool in natural sciences and engineering that allow us to deepen our under-
standing of nature or improve the design of engineered systems. One way to categorize models
is by the modeling technique used to derive the model: first principles models are derived using
fundamental physical laws, and data-driven models are created based on experimental data.

First, in Section 2.1, a running example is introduced, where we describe how differential equa-
tions can be used to model a simple mechanical system and how a solver is used to obtain a sim-
ulation. Then, Section 2.2 introduces the different ways NN-based models of the system can be
constructed and trained. Finally, Section 2.3 introduces a taxonomy of the different ways NNs can
be used to construct models of dynamical systems.

2.1 Differential Equations
An ideal pendulum, shown in Figure 3, refers to a mathematical model of a pendulum that, unlike
its physical counterpart, neglects the influence of factors such as friction in the pivot or bending
of the pendulum arm. The state of this system can be represented by two variables: its angle θ
(expressed in radians) and its angular velocity ω. These variables correspond to a mathematical
description of the system’s state and are referred to as state variables. The way that a given point
in the state-space evolves over time can be described using differential equations. Specifically, for
the ideal pendulum, we may use the following ordinary differential equation (ODE):

∂2θ

∂t2 +
д

l
sinθ = 0, (1)

where д is the gravitational acceleration and l is the length of the pendulum arm. The ideal pen-
dulum (Equation (1)) falls into the category of autonomous and time-invariant systems, since the
system is not influenced by external stimulus and the dynamics do not change over time. Although
this simplifies the notation and the way in which models can be constructed, it is not the general
case. We discuss the implication of these issues in Section 4.3.1.

The equation can be rewritten as two first-order differential equations and expressed compactly
using vector notation as follows:

f (x) =

[
∂ω
∂t
∂θ
∂t

]
=

[−д
l sinθ
ω

]
. (2)

where x is a vector of the system’s state variables. In the context of this article, we refer to f (x)
as the derivative function or as the derivative of the system.

Although the differential equations describe how each state variable will evolve over the
next time instance, they do not provide any way of determining the solution x (t) on their own.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:6 C. Legaard et al.

Fig. 4. Diagram of the pendulum system and an example of the trajectory generated when solving the equa-
tion using a numerical solver.

Obtaining the solution of an ODE f (x) given some initial conditions x0 is referred to as an initial
value problem (IVP) and can be formalized as follows:

∂

∂t
x (t) = f (x (t)), (3)

x (t0) = x0 (4)

where x (·) is called the solution, x : R→ Rn , andn ∈ N is the dimension of the system’s state space.
The result of solving the IVP corresponding to the pendulum can be seen in Figure 4(b), which

shows how the two state variables θ and ω evolve from their initial state. An alternative view of
this can be seen in the phase portrait in Figure 4(a).

In many cases, it is impossible to find an exact analytical solution to the IVP, and instead numer-
ical methods are used to approximate the solution. Numerical solvers are algorithms that approx-
imate a continuous IVP, as the one in Equation (2), into a discrete-time dynamical system. These
systems are often modeled with difference equations:

xi+1 = F (xi), (5)

where xi represents the state vector at the i-th time point, xi+1 represents the next state vector, and
F : Rn → Rn models the system behavior. Just as with ODEs, the initial state can be represented by
a constraint on x0, and the solution to Equation (5) with an initial value defined by such constraint
is a function xi defined for all i ≥ 0. In Equation (5), time is implicitly defined as a discrete set.

We start by introducing the simplest and most intuitive numerical solver because it highlights
the main challenges well. There are many numerical solvers, each presenting unique trade-offs.
The reader is referred to the work of Cellier and Kofman [14] for an introduction to this topic, to
the work of Hairer and Wanner [44] and Wanner and Hairer [133] for more detailed expositions
on the numerical solution of ODEs and differential-algebraic system of equations (DAEs), to the
work of LeVeque [69] for the numerical solution to partial differential equations (PDEs), to
the work of Marsden and West [78] for an overview of more advanced numerical schemes, and to
the work of Kofman and Junco [60] for an introduction to quantized state solvers.

Given an IVP (Equation (3)) and a simulation step size h > 0, the forward Euler (FE) method
computes a sequence in time of points x̃i , where x̃i is the approximation of the solution to the

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:7

Fig. 5. An FC NN is used to perform regression from an input x to y, where ỹ represents the approximation
provided by the NN. Each layer of the network is characterized by a set of weights that are tuned during
training to produce the desired output for a given input. During training, the loss function L is used to
measure the divergence between the output produced by the network, ỹ, and the desired output, y.

IVP at time hj: x̃i ≈ xi = x (hi). It starts from the given initial value x̃0 = x (0) and then computes
iteratively:

x̃i+1 = x̃i + hf (ti , x̃i), (6)
where f : R × Rn → Rn is the ODE right-hand side in Equation (2) and ti = hi .

A graphical representation of the solutions IVP starting from different initial conditions can be
seen in Figure 4(a). For a specific point, the solver evaluates the derivative (depicted as curved
arrows in the plot) and takes a small step in this direction. Applying this process iteratively results
in the full trajectory, which for the pendulum corresponds to the circle in the phase space. The
circle in the phase space implies that the solution is repeating itself—that is, corresponds to an
oscillation in time as seen in Figure 4(b).

The ideal pendulum is an example of a well-studied dynamical system for which the dynamics
can be described using simple ODEs that can be solved using standard solvers. Unfortunately, the
simplicity of the idealized model comes at the cost of neglecting several factors that are present
in a real pendulum. For example, the arm of the real pendulum may bend and energy may be lost
in the pivot due to friction. The idealized model can be extended to account for these factors by
incorporating models of friction and bending. However, this is time consuming, leads to a model
that is harder to interpret, and does not guarantee that all factors are accounted for.

2.2 Neural Networks
Today, the term neural network has come to encompass a whole family of models, which collec-
tively have proven to be effective building blocks for solving a wide range of problems. In this
article, we focus on a single class of networks, the fully connected (FC) NNs, due to their sim-
plicity and the fact that they will be used to construct the models introduced in later sections. We
refer the reader to the work of Goodfellow et al. [40] for a general introduction to the field of DL.

Like other data-driven models, NNs are generic structures that have no behavior specific to the
problem they are being applied to before training. For this reason, it is essential to consider not
only how the network produces its outputs but also how the network’s parameters are tuned to
solve the problem. For instance, we may consider using an FC NN to perform regression from a
scalar input, x , to a scalar output, y, as shown in Figure 5(a).

We will refer to the process of producing predictions as inference and the process of tuning the
network’s weights to produce the desired results as training. There can be quite drastic differences

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:8 C. Legaard et al.

Fig. 6. Overview of two distinct model types. Direct-solution models are trained to produce a simulation
without performing numerical integration explicitly. Conversely, time-stepper models use the same tech-
niques known from numerical simulation to produce a simulation of the system.

in the complexity of the two phases, the training phase typically being the most complex and
computationally intensive. During training, a loss function defines a mapping from the predicted
quantity to a scalar that is a measure of how close the prediction is to the true trajectory. Differ-
entiating the loss function with respect to the parameters of the NN allows us to update them in
a way such that the loss is minimized.

Batching and Notation. During the training of an NN, we often wish to perform the forward
pass individually for multiple inputs grouped in a batch. By convention, many DL frameworks
treat any leading dimensions as being batches of samples. We adopt this convention as well to
simplify notation. Thus, N (x) ∈ R∗×n when N : Rn → Rn and x ∈ R∗×n (‘∗’ indicating any
number of leading dimensions).

2.3 Model Taxonomy
A challenge of studying any fast-evolving research field such as DL is that the terminology used
to describe important concepts and ideas may not always have converged. This is especially true
in the intersection between DL, numerical simulation, and physics, due to the influx of ideas and
terminology from the different fields. In the literature, there is also a tendency to focus on the suc-
cess of a particular technique in a specific application, with little emphasis on explaining the inner
workings and limitations of the technique. A consequence of this is that important contributions
to the field become lost due to the papers being hard to digest.

In an attempt to alleviate this, we propose a simple taxonomy describing how models can be
constructed consisting of two categories: direct-solution models and time-stepper models, as shown
in Figure 6. Direct-solution models, described in Section 3, do not employ integration but rather
produce an estimate of the state at a particular time by feeding in the time as an input to the net-
work. Time-stepper models, found in Section 4, can be characterized by using a similar approach
to numerical solvers, where the current state is used to calculate the state at some time into the fu-
ture. The difference between the time-stepper and continuous models has significant implications
for how the model deals with varying initial conditions and inputs. Per design, the time-stepper
models handle different initial conditions and inputs, whereas direct-solution models have to be
retrained. In other words, the time-stepper models learn the dynamics while the direct-solution
models learn a solution to an IVP for a given initial state and set of inputs.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:9

Table 1. Comparison of Direct-Solution Models

Name InN N OutN N OutAD Uses Equations
Vanilla Direct-Solution t θ ,ω

Automatic Differentiation Direct-Solution t θ ω
Physics-Informed Neural Network t θ ω, ∂ω �
Hidden Physics Neural Network t θ , l ω, ∂ω �

3 DIRECT-SOLUTION MODELS
One approach to obtaining the trace of a system is to construct a model that maps a set of time
instances t ∈ Rm to the solution x̃ ∈ Rm×n . We refer to this type of model as a direct-solution
model.

To construct the model, an NN is trained to provide an exact solution for a set of collocation
points that are sampled from the true system. Another way to view this is that the NN acts as
a trainable interpolation engine, which allows the solution to be evaluated at arbitrary points in
time, not only those of the collocation points. An important limitation of this approach is that a
trained model is fixed for a specific set of initial conditions. To evaluate the solution for different
initial conditions, a new model would have to be trained on new data.

In the literature, this type of model is often applied to learn the dynamics of systems governed
by PDEs and less frequently for systems governed by ODEs. Several factors are likely to influence
this pattern of use. First, PDEs are generally harder and more computationally expensive to solve
than ODEs, which provides a stronger motivation for applying NNs as a means to obtain a solution.
Second, many practical uses of ODEs require that they can easily be evaluated for different initial
conditions, which is not the case for direct-solution models.

Although the motivation for applying direct-solution networks may be strongest for PDEs, they
can also be applied to model ODEs. The main difference is that a network to model an ODE takes
time as the only input, whereas the network used to model a PDE would take both time and spatial
coordinates.

A key challenge in training direct-solution NNs is the amount of data required to reach an
acceptable level of accuracy and generalization. A vanilla approach that does not leverage prior
knowledge, like the one described in Section 3.2, is likely to fit the collocation points very well but
fails to reproduce the underlying trend. A recent trend popularized by physics-informed neu-
ral networks (PINNs) [101] is to apply automatic differentiation (AD) and to use equations
encoding prior knowledge to improve the generalization of the model.

The remaining part of this section describes how the different types of direct-solution models,
shown in Table 1, can be applied to simulate the ideal pendulum system for a specific initial condi-
tion. First, the architecture of the NNs used for the experiments is introduced in Section 3.1. Next,
the simplest approach is introduced in Section 3.2, before progressively building up to a model
type that incorporates features from all prior models in Section 3.5.

3.1 Methodology
The examples of direct-solution models shown in this section use an FC NN with three hidden
layers consisting of 32 neurons each. The output of each hidden layer is followed by a softplus
activation function.

Each model is trained on a trajectory corresponding to the simulation for a single initial condi-
tion, which is sampled to obtain a set of collocation points as shown in Figure 7(b). The goal is to
obtain a model that can predict the solution at any point in time, not only those coinciding with
the collocation points.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:10 C. Legaard et al.

Fig. 7. Vanilla direct-solution model. The network N : R → R2 maps time instances t to the solution
θ̃ , ω̃. Black dots indicate the collocation points (i.e., the points in which the loss function is minimized). The
network fits all collocation points well but fails to generalize in the interval between points. In addition, ω̃ is
very different from the approximation obtained using numerical differentiation of θ̃ .

3.2 Vanilla Direct-Solution
Direct-solution models produce an estimate of the system’s state at a given time, ti , by introducing
it as an input to an NN.

To model the pendulumm we use a feed-forward network with a single input t and two outputs
θ̃ and ω̃, as depicted in Figure 7(a). To obtain the solution for multiple time instances, the net-
work can simply be evaluated multiple times. There are no dependencies between the estimates
of multiple states, allowing us to evaluate all of these in parallel.

The network is trained by minimizing the difference between the predicted and the true trajec-
tory in the collocation points shown in Figure 7(b) using a distance metric such as MSE defined by
Equation (7):

Lc (x̃ ,x) =
1
mn

m−1∑

i=0

n−1∑

j=0
(x̃i j − xi j)

2, (7)

where m is the length of the trajectory, n is the dimension of the system’s state-space, and xi j
denotes the value of the j-th state at the i-th point of time of the trajectory.

It is important to emphasize that the models learn a sequence of system states characterized
by a specific set of initial conditions—that is, the initial conditions are encoded into the trainable
parameters of the network during training and cannot be modified during inference.

Direct-solution models are sensitive to the quality of training data. NNs are used to find map-
pings between sparse sets of input data and the output. Even a simple example in the data-sampling
strategy can influence their generalization performance. Consider the trajectory in Figure 7(b); the
model has only learned the correct solution in the collocation points and fails to generalize any-
where else.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:11

Fig. 8. AD in the direct-solution model. The networkN : R→ Rmaps the time instances t to the pendulum’s
angle θ̃ . The angular velocity ω̃ is obtained by differentiating θ̃ with respect to time using AD. This approach
ensures that an output, representing the derivative of another output, acts like a true derivative. As a result,
the network generalizes significantly better across both state variables.

It is worth noting that there are many ways that this can go wrong—that is, given a sufficiently
sparse sampling, it is not just one specific choice of training points that makes it impossible for
the network to learn the true mapping. The obvious way to mitigate the issue is to obtain more
data by sampling at a higher rate. However, there are cases where data acquisition is expensive,
impractical, or it is simply impossible to change the sampling frequency.

Consider a system where one state variable is the derivative of the other, a setting that is quite
common in systems that can be described by differential equations. A vanilla direct-solution model
cannot guarantee that the relationship between the predicted state variables respects this property.
Figure 7(b) provides a graphical representation of the issue. Although the model predicts both
system state variables correctly in the collocation points, it can clearly be seen that the estimate
for ω is neither the derivative of θ̃ nor does it come close to the true trajectory.

3.3 AD Direct-Solution
One way to leverage known relations is to calculate derivatives of state variables using automatic
differentiation instead of having the network predict them as explicit outputs. In the case of the
pendulum, this means using the network to predict θ̃ and then obtaining ω̃ by calculating the first-
order derivative of θ̃ with respect to time, as described in Figure 8(c) and (d). Figure 8(b) shows
how much closer the predicted trajectories are to the true ones when using this approach.

A drawback of obtaining ω using AD is an increased computation cost and memory consump-
tion depending on which mode of AD is used. Using reverse mode AD (backpropagation) as de-
picted in Figure 8(a) requires another pass of the computation graph, as indicated by the arrow
going from output θ to input t . For training, this is not problematic since the computations carried
out during backpropagation are necessary to update the weights of the network as well. However,
using backpropagation during inference is not ideal because it introduces unnecessary memory
and computation cost. An alternative is to use forward AD where the derivatives are computed

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:12 C. Legaard et al.

Fig. 9. Physics-informed neural network. The network N : R → R maps the time instances t to the pendu-
lum’s angle θ̃ . The angular velocity ω̃ and its derivative are obtained using AD. The network is trained by
minimizing Equation (8).

during the forward pass, thus dispensing of the separate backward pass. Unfortunately, not all DL
frameworks provide support for forward mode AD (see Table 5 in the work of Baydin et al. [5]).
A likely explanation is that the typical task of evaluating the derivative of the loss with respect to
the network’s weights is more efficient using reverse-mode AD (backpropagation).

3.4 Physics-Informed Neural Networks
In modeling scenarios where the equations describing the dynamics of the system are known, we
can use them to train the model as another way of addressing the data-sampling issue. In what is
known as physics-informed neural networks [101], knowledge about the physical laws governing
the system is used to impose structure on the NN model. This can be accomplished by extending
the loss function with an equation loss term that ensures the solution obeys the dynamics described
by the governing equations. Although this technique was originally proposed for solving PDEs, it
can also be applied to solve ODEs. For instance, to model the ideal pendulum using a PINN, we
could integrate the expression of ∂ω̃

∂t from Equation (1) to formulate the loss as

LP I ��θ̃ ,
∂θ̃

∂t
,
∂ω̃

∂t
�� = Lc ��θ̃ ,

∂θ̃

∂t
�� + Leq

(
θ̃ ,
∂ω̃

∂t

)
(8)

Leq

(
θ̃ ,
∂ω̃

∂t

)
=

1
m

m−1∑

i=0

(
∂ω̃i

∂t
− д

l
sin θ̃i

)2
.

Again, we can use automatic differentiation to obtain ∂ω̃
∂t by differentiating θ̃ twice, depicted

in the computation graph shown in Figure 9(a). As shown in Figure 9(c), this requires only a few
lines of code when using AD.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:13

A motivation for incorporating the equation loss term is to constrain the search space of the
optimizer to parameters that yield physically consistent solutions. It should be noted that both
the loss term penalizing the prediction error and the equation error are necessary to constrain
the predictions of the network. On its own, the equation error guarantees that the predicted state
satisfies the ODE, but not necessarily that it is the solution at a particular time. Introducing the
prediction error ensures that the predictions are not only valid but also the correct solutions for
the particular points used to calculate the prediction error. In addition, it should be noted that the
collocation and equation loss terms may be evaluated for a different set of times. For instance,
the equation-based loss term may be evaluated for an arbitrary number of time instances, since
the term does rely on accessing the true solution for particular time instances.

In addition to proposing the introduction of the equation loss, PINNs also apply the idea of
using backpropagation to calculate the derivatives of the state variables rather than adding them
as outputs to the network, as depicted in Figure 9(a). Being able to obtain the n-th order derivatives
is very useful for PINNs, as they often appear in differential equations on which the equation loss
is based. For the ideal pendulum, this technique can be used to obtain ∂2θ

∂t 2 (t) from a single output
of the network θ , which can then be plugged into Equation (2) to check that the prediction is
consistent. A benefit of using backpropagation compared to adding state variables as outputs of
the network is that this structurally ensures that the derivatives are in fact partial derivatives of
the state variables.

Training PINNs using gradient descent requires careful tuning of the learning rate. Specifically,
it has been observed that the boundary conditions and the physics regularization terms may con-
verge at different rates. In some cases, this manifests itself as a large misfit specifically at the
boundary points. Wang et al. [131, 132] propose a strategy for weighing the different terms of the
loss function to ensure consistent minimization across all terms.

3.5 Hidden Physics Networks
Hidden physics neural networks (HNNs) [103] can be seen as an extension of PINNs that use
governing equations to extract features of the data that are not present in the original training
data. We refer to the unobserved variable of interest as a hidden variable. This technique is useful
in cases where the hidden variable is difficult to measure compared to the known variables or
simply impossible to measure since no sensor exists that can reliably measure it.

For the sake of demonstration, we may suppose that the length of the pendulum arm is unknown
and that it varies with time, as shown in Figure 10(b). For the training, this is problematic since l is
required to calculate the equation loss. A solution to this is to add an output l̃ to the network that
serves as an approximation of the true length l , as depicted in Figure 10(d). We modify Equation (8)
to define a new loss function that takes the estimate of l̃ into account

LH P ��θ̃ ,
∂θ̃

∂t
,
∂ω̃

∂t
, l̃�� = Lc ��θ̃ ,

∂θ̃

∂t
�� + L

′
eq

(
θ̃ ,
∂ω̃

∂t
, l̃

)
(9)

L′eq

(
θ̃ ,
∂ω̃

∂t
, l̃

)
=

1
m

m−1∑

i=0

(
∂ω̃i

∂t
− д

l̃i
sin θ̃i

)2
.

It should be emphasized that l̃ is not part of the collocation loss term, since the true value l is
not known. It is only as a result of the equation loss that the network is constrained to produce
estimates of l satisfies the system’s dynamics.

Raissi et al. [103] use this technique to extract pressure and velocity fields based on measured dye
concentrations. In this particular case, the dye concentration can be measured by a camera, since

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:14 C. Legaard et al.

Fig. 10. Hidden physics network. This networkN : R→ R2 is an extension of the PINN and maps the time
instances t to the pendulum’s angle θ̃ and the length of the pendulum l̃ that is set to vary in time for the
sake of demonstration. Note that l̃ is not part of Lc since there is no training data for it; instead, it is part
of the equation loss L′eq .

the opacity of the fluid is proportional to the dye concentration. They show that this technique
also works well even in cases where the dye concentration is sampled at only a few points in time
and in space. Like PINNs, HNNs are easily applied to PDEs, but at the cost of the initial conditions
being encoded in the network during training.

The difference between PINNs and HNNs is very subtle; both utilize similar network architec-
tures and use loss functions that penalize any incorrect prediction violations of governing equa-
tions. A distinguishing factor is that, in HNNs, the hidden variable is inferred based on physical
laws that relate the hidden variable to the observed variables. Since the hidden variables are not
part of the training data, they can only be enforced through equations.

4 TIME-STEPPER MODELS
Consider the approach used to model an ideal pendulum, described in Section 2. First, a set of
differential equations, Equation (2), was used to model the derivative function of the system.
Next, using the function, a numerical solver was used to obtain a simulation of the system for
a particular initial condition. The challenge of this approach is that identifying the derivative
function analytically is difficult for complex systems.

An alternative approach is to train an NN to approximate the derivative function of the system,
allowing the network to be used in place of the hand-derived function, as depicted in Figure 11.
We refer to this type of model as a time-stepper model since it produces a simulation by taking
multiple steps in time, like a numerical solver. An advantage of this is that it allows well-studied
numerical solvers to be integrated into a model with relative ease.

The main differences between two given models can be attributed to (i) how the derivatives
are produced by the network and (ii) what sort of integration scheme is applied. For instance,
the difference between the direct (Section 4.2.1) and Euler time-stepper models (Section 4.2.2) is
that the former does not employ any integration scheme, whereas the latter is similar to the FE

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:15

Fig. 11. Time-stepper model. Starting from a given initial condition x0, the next state of the system, x̃i+1,
is obtained by feeding the current state x̃i into the derivative network N , producing a derivative that is
integrated using an integration scheme

∫
. The loss L is evaluated by comparing the predicted with the

training trajectory. The process can be repeated for multiple trajectories to improve the generalization of the
derivative network.

(recall Equation (6)), leading to a significant difference in predictive ability. Other networks, such
as the Lagrangian time-stepper, Section 4.4.1, distinguish themselves by the way the NN produces
the derivatives. Specifically, this approach does not obtain ∂θ and ∂ω as outputs from a network
but instead uses AD in an approach similar to Section 3.3. Similar to how an ODE can be solved
with different numerical solvers, the Lagrangian time-stepper could be modified to use a different
integration scheme than FE.

Given the independent relationship between the choice of NN and the numerical solver used,
the models introduced in the sections should not be viewed as an exhaustive list of combinations.
Rather, the aim is to describe and compare the models commonly encountered in the literature.

4.1 Methodology
A time-stepper must be able to produce accurate simulations for different initial conditions. It
would be possible to train a time-stepper using a single trajectory; however, this is unlikely to
generalize well to different initial conditions. Another approach is to use multiple, potentially
shorter trajectories as training data. We can extend Equation (7) to take the mean error over l
trajectories:

Lts (X̃ ,X) =
1
l

l−1∑

i=0
Lc (X̃i ,Xi), (10)

where X ∈ Rl×m×n are the training trajectories and X̃ ∈ Rl×m×n are the predicted trajectories.
Each time-stepper model is trained on 100 trajectories, each consisting of two samples: the initial

state and the state one step into the future. The initial states are sampled in the interval θ : (−1, 1)
and ω : (−1, 1) using Latin hyper-cube sampling (see Figure 11). Each model uses an FC network
consisting of eight hidden layers with 32 neurons each. Each layer of the network applies a softplus
activation function. The number of inputs and outputs is determined by the number of states
characterizing the system, which is 2 for the ideal pendulum. Exceptions to this are networks such
as the Lagrangian network described in Section 4.4.1, for which the derivatives are obtained using
AD rather than as outputs of a network.

To validate the performance of each model, 100 new initial conditions are sampled in a grid.
For each initial condition in the validation set, the system is simulated for 4π seconds using the
original ODE and compared with the corresponding prediction made by the trained model. For
simplicity, we show only the trajectory corresponding to a single initial condition, like the one in
Figure 12(b).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:16 C. Legaard et al.

Fig. 12. Direct time-stepper. The output of the network N : R2 → R2 is used as the prediction for the next
step without any form of numerical integration. An issue of this type of model is that it fails to generalize
beyond the exact points in state space that it has been trained for. Over several steps, the error compounds,
which leads to an inaccurate simulation.

4.2 Integration Schemes
An important characteristic of a time-stepper model is how the derivatives are evaluated and inte-
grated to obtain a simulation of the system. Again, it should be emphasized that the choice of the
numerical solver is independent of the architecture of the NN used to approximate the derivative
function. In other words, for a given choice of NN architecture, the performance of the trained
model may depend on the choice of solver.

The choice of numerical solver not only determines how the model produces a simulation of
the system but also influences how the model must be trained. Specifically, when minimizing any
criterion that is a function of the integrated state, the choice of solver determines how the state is
produced.

In the following section, we demonstrate how various numerical solvers can be used and evalu-
ate their impacts on the performance of the models.

4.2.1 Direct Time-Stepper. The simplest approach to obtaining the next state is to use the pre-
diction produced by the network directly, as summarized in Figure 12(a):

x̃i+1 = N (x̃i),

where N represents a generic NN with arbitrary architecture and x̃0 = x0.
The network is trained to produce an estimate of the next state, x̃i+1, from the current state,

xi . During training, this operation can be vectorized such that every state at every timestamp,
omitting the last, is mapped one step into the future using a single invocation of the network, as
shown in Figure 12(c). The reason for leaving out the last sample in when invoking the NN is that
this would produce a prediction, xN+1, for which there does not exist a sample in the training set.

At inference time, only the initial state x0 is known. The full trace of the system is obtained
by repeatedly introducing the current state into the network, as depicted in Figure 12(d). Note
that the inference phase cannot be parallelized in time, since predictions for time i + 1 depend on

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:17

Fig. 13. Residual time-stepper. The output of the network is added to the current state to form a prediction
of the next state. Compared to the direct time-stepper, this method produces simulations that are much
closer to the true system.

predictions for time k . However, it is possible to simulate the system for multiple initial states in
parallel, as they are independent of each other.

The simulation for a single initial condition can be seen in Figure 12(b). Although the simulation
is accurate for the first few steps, it quickly diverges from the true dynamics.

4.2.2 Residual Time-Stepper. A network can be trained to predict a derivative-like quantity that
can then be added to the current state to yield the next as shown in Figure 13(a):

x̃i+1 = x̃i +N (x̃i).

DL practitioners may recognize this as a residual block that forms the basis for residual net-
works (ResNets) [45], which are used with great success in applications spanning from image
classification to natural language processing. Readers familiar with numerical simulation will
likely notice that the previous equation closely resembles the accumulated term in the FE
integrator (recall Equation (6)) but without the term that accounts for the step size. If the data is
sampled at equidistant timesteps, the network scales the derivative to adapt the step size.

The central motivation for using a residual network is that it may be easier to train a network
to predict how the system will change rather than a direct mapping between the current and next
state.

4.2.3 Euler Time-Stepper. Alternatively, the step size can be encoded in the model by scaling
the contribution of the derivative by the step size hi as shown in Figure 14(a):

x̃i+1 = x̃i + hi ∗ N (x̃i). (11)
This resemblance has been noted several times [97] and has resulted in work that interprets resid-
ual networks as ODEs allowing classical stability analysis to be used [15, 110, 111].

The FE integrator shown in Equation (11) is simple to implement. However, it accumulates a
higher error than more advanced methods, such as the Midpoint, for a given step size. This issue

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:18 C. Legaard et al.

Fig. 14. Euler time-stepper. The output of the network is multiplied by the step size and is added to the
current state to form a prediction for the next state. In this case, accounting for the step size leads to minimal
improvements, if any, compared to the residual time-stepper. This is likely due to the fact that the step size
used during training is the same as the one used to plot the trajectory in Figure 14(b).

has motivated the integration of more sophisticated numerical solvers in time-stepper models.
For example, linear multistep (LMS) methods are used in the work of Raissi et al. [102]. LMS
uses several past states and their derivatives to predict the next state, resulting in a smaller error
compared to FE. Like FE, LMS only requires a single function evaluation per step, making it a very
efficient method. But if the system is not continuous, this method needs to be reinitialized after a
discontinuity occurs [36].

4.2.4 Neural Ordinary Differential Equations. Neural ordinary differential equations
(NODEs) [18] is a method used to construct models by combining a numerical solver with an
NN that approximates the derivative of the system. Unlike the previously introduced models, the
term NODEs is not used to refer to models using a specific integration scheme but rather to the
idea of treating an ML problem as a dynamical system that can be solved using a numerical solver.
Part of their contribution was the implementation of differentiable solvers accessible via a simple
API, allowing users to implement NODEs in only a few lines of code, as shown in Figure 16.

Some confusion may arise from the fact that NODEs are frequently used for image classification
throughout the literature, which may seem completely unrelated to numerical simulations. The
underlying idea is that an image can be represented as a point in state-space that moves on a
trajectory defined by an ODE, as shown in Figure 15. The goal of this is to find an ODE that
results in images of the same class converging to a cluster that is easily separable from that of
unrelated classes. For single inference (e.g., in image classification), intermediate predictions have
no inherent meaning—that is, they typically do not correspond to any measurable quantity of
the system; we are only interested in the final estimate x̂m . Due to the lack of training samples
corresponding to intermediate steps, it is impossible to minimize the single-step error.

Chen et al. [18] motivate the use of an adaptive step-size solver by its ability to adjust the step
size to match the desired balance between numerical error and performance. An alternative way

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:19

Fig. 15. Different applications of NODEs. NODEs can be used to simulate a dynamical system with the goal
of obtaining a trajectory corresponding to an initial condition. In this case, the goal is to train the network to
produce a derivative that provides a good estimate of the true state at every step of the trajectory. Another
use is for classification by treating each input sample as a point in state-space, which evolves according to
the derivative produced by the network. In this case, the goal is to train the network to learn dynamics that
leads to samples belonging to each class ending in distinct clusters that are easily separable.

Fig. 16. Neural ordinary differential equations. NODEs generally refer to models that are constructed to use
a numerical solver to integrate the derivatives through time. Unlike the previously introduced integration
schemes that mapped to concrete architectures, NODEs refer to the idea of using well-established numerical
solvers inside a model. Part of NODEs’ popularity is due to the fact that it mimics the programming APIs of
traditional numerical solvers, which makes it easy to switch between different types of solvers.

to view NODEs is as a continuous-depth model where the number of layers is a result of the step
size chosen by the solver.

From this perspective, the stability of NODEs is closely related to the stability of integration
schemes of classical ODEs. To address the convergence issues during training, some authors pro-
pose NODEs with stability guarantees by exploiting Lyapunov stability theory [79] and spectral
projections [99]. Another standing issue of NODEs is their large computational overhead during
training compared to classical NNs. Finlay et al. [28] demonstrated that stability regularization
may improve convergence and reduce the training times of NODEs. Poli et al. [96] propose graph
NODEs resulting in training speedups, as well as improved performance due to incorporation of
prior knowledge.

To improve the performance, others have introduced various inductive biases such as Hamil-
tonian NODE architecture [142] or penalizing higher-order derivatives of the NODEs in the

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:20 C. Legaard et al.

Fig. 17. Incorporation of inputs in the time-stepping model.

loss function [55]. To account for the noise and uncertainties, some authors proposed stochastic
NODEs [42, 48, 70, 74] as generalizations of deterministic NODEs.

A fundamental issue of interpreting trained NODEs as proper ODEs is that they may have trajec-
tory crossings, and their performance can be sensitive to the step size used during inference [92].
Contrary to this, the solutions of ODEs with unique solutions would never have intersecting tra-
jectories, as this would imply that for a given state (the point of intersection), the system could
evolve in two different ways. Some authors have noted that there seems to be a critical step size
for which the trained network starts behaving like a proper ODE [92]. In other words, if trained
with a particular step size, the network will perform equally well or better if used with a smaller
step size during inference. Another approach is to use regularization to constrain the parameters
of the network to ensure that solutions are unique. For ResNets, this can be achieved by ensuring
that the Lipschitz constant of the network is less than 1 for any point in the state-space, which
guarantees a unique solution [7].

To deal with external inputs in NODEs, Dupont et al. [27] and Norcliffe et al. [88] propose lifting
the state-space via additional augmented variables. A more general way of explicitly modeling the
input dynamics via additional NNs is proposed by Massaroli et al. [80].

4.3 External Input
So far, we have only considered how to apply time-stepper models to systems where the derivative
function is determined exclusively by the system’s state. In practice, many systems encountered
are influenced by an external stimulus that is independent of the dynamics, such as external forces
acting on the system or actuation signals of a controller. To avoid confusion, we refer to these
external influences as external input to distinguish them from the general concept of an NN’s
inputs.

The structure of a time-stepper model lends itself well to introducing external inputs at every
evaluation of the derivative function. As a result, it is possible to integrate external inputs in time-
stepper models in many ways.

4.3.1 Neural State-Space Models. Inputs can be added to the time-stepper models in a couple
of ways. One way is to concatenate the inputs with the states, as illustrated in Figure 17(a):

x̃i+1 = N ([xi ,ui]), (12)

where x̃i and ui represent states and inputs at time ti , respectively. The evolution of the future
state xi+1 is fully determined by the derivative networkN . A possible rationale for lumping system
states and inputs are parameter-varying systems, where the inputs influence the system differently
depending on the current state. This approach does not impose any structure on how the state
and input information are aggregated in the network, since the layers of the network make no
distinction between the two.

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:21

Alternatively, two separate networks A and B can be used to model contributions of the au-
tonomous and forced parts of the dynamics, respectively, as seen in Figure 17(b). This information
can then be aggregated by taking the sum of the two terms:

x̃i+1 = A (x̃i) + B (ui). (13)

This approach is suitable for systems where the influence of the inputs is known to be independent
of the state of the system since it structurally enforces models that are independent.

In system identification and control theory, both variants (12) and (13) are referred to as state-
space models (SSMs) [56, 66, 116, 117]. More recently, researchers [43, 64, 104, 123] proposed to
model non-linear SSMs by using NNs, which we refer to as neural SSMs.

Some works proposed to combine neural approximations with classical approaches with lin-
ear state transition dynamics A, resulting in Hammerstein [91] and Hammerstein-Wiener [47]
architectures, or using linear operators representing transfer function as layers in deep NNs [30].
However, others leverage encoder-decoder neural architectures to handle partially observable dy-
namics [37, 81]. Some authors [26, 120, 121] applied principles of gray-box modeling by imposing
physics-informed constraints on a learned neural SSM. Ogunmolu et al. [90] analyzed the effect of
different neural architectures on the system identification performance of non-linear systems and
concluded that compared to classical non-linear regressive models, deep NNs scale better and are
easier to train.

4.3.2 NODEs with External Input. The challenge of introducing external input to NODEs is that
the numerical solver may try to evaluate the derivative function at time instances that align with
the sampled values of the external input. For instance, an adaptive step-size solver may choose its
own internal step size based on how rapidly the derivative function changes in the neighborhood
of the current state. The issue can be solved using interpolation to obtain values of external inputs
for time instances that do not coincide with the sampling.

External input can also be used to represent static parameter values that remain constant
through a simulation. In the context of the ideal pendulum system, we could imagine that the
length of the pendulum could be made a parameter of the model, allowing the model to simulate
the system under different conditions. Lee and Parish [67] call this approach parameterized NODEs
and use this mechanism to train models that can solve PDEs for different parameter values.

Another approach is neural controlled differential equations (NCDEs) [57]. The term con-
trolled should not be confused with the field of control theory but rather the mathematical concept
of controlled differential equations from the field of rough analysis. The core idea of NCDEs is to
treat the progression of time and the external inputs as a signal that drives the evolution of the
system’s state over time. The way that a specific system responds to this signal is approximated
using an NN. A benefit of this approach is that it generalizes how a system’s autonomous and
forced dynamics are modeled. Specifically, it allows NCDEs to be applied to systems where NODEs
would be applied, as well as systems where the output is purely driven by the external input to
the system.

4.4 Network Architecture
Part of the success of NNs can be attributed to the ease of integrating specialized architectures
into a model. In this section, we introduce a few examples of how to integrate domain-specific
NNs into a time-stepper model.

First, Section 4.4.1 describes how energy-conserving dynamics can be enforced by encoding the
problem using Hamiltonian or Lagrangian mechanics. Next, Section 4.4.2 demonstrates another
way of enforcing energy conservation, which is often encountered in molecular dynamics (MD).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:22 C. Legaard et al.

Finally, Section 4.4.3 describes how graphs can be integrated with a time-stepper to solve problems
that can naturally be represented as graphs.

Fig. 18. Lagrangian time-stepper. The La-
grangian, L (not to be confused with the loss
function), is differentiated using AD to obtain
the derivative of the state.

4.4.1 Hamiltonian and Lagrangian Networks. Re-
call that the movement in some physical systems
happens as a result of energy transfers within the
system, as opposed to systems where energy is
transferred to/from the system. The former is called
an energy conservative system. For instance, if the
pendulum introduced in Figure 3 had no friction
and no external forces acting on it, it would oscil-
late forever, with its kinetic and potential energy
oscillating without a change in its total energy. In
physics, a special class of closely related functions,
called Hamiltonian and Lagrangian functions, has
been developed for describing the total energy of
a system. Both Hamiltonian H and Lagrangian L
are defined as a sum of total kineticT and potential
energy V of the system. We start with the Hamil-
tonian defined as

H (x) = T (x) −V (x), (14)

where x = [q,p] represents the concatenated state vector of generalized coordinates q and general-
ized momentap. By taking the gradients of the energy function (14), we can derive a corresponding
differential ẋ = f (x) equation as

ẋ = S∇H (x), (15)

where S is a symplectic matrix. Please note that the difference between H and L is their corre-
sponding coordinate system: for the Lagrangian, instead of x = [q,p], we consider x = [q, q̇],
where ṗ = M (q)q̇, with M (q) being a generalized mass matrix.

Despite their mathematical elegance, deriving analytical Hamiltonian and Lagrangian functions
for complex dynamical systems is a grueling task. In recent years, the research community turned
its attention to deriving these types of scalar-valued energy functions by means of data-driven
methods [41, 77, 142]. Specifically, the goal is to train an NN to approximate the Hamiltonian/La-
grangian of the system, as shown in Figure 18. A key aspect of this approach is that the derivatives
of the states are not outputs of the network but are instead obtained by differentiating the output of
the networkL, with respect to the state variables [θ ,ω] and plugging the results into Equation (14).
The main advantage of Hamiltonian [41, 124] NNs and the closely related Lagrangian [21, 77] NNs
is that they naturally incorporate the preservation of energy into the network structure itself.
Research into the simulation of energy-preserving systems has yielded a special class of solvers,
called symplectic solvers. Jin et al. [52] propose a new specialized network architecture, referred to
as symplectic networks, to ensure that the dynamics of the model are energy conserving. Similarly,
Finzi et al. [29] propose extensions for including explicit constraints via Lagrange multipliers for
improved training efficiency and accuracy.

4.4.2 Deep Potential Energy Networks. A similar concept to that of Hamiltonian and Lagrangian
NNs involves learning neural surrogates for potential energy functionsV (x) of a dynamical system,
where the primary difference with Hamiltonians and Lagrangians is that the kinetic terms are

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:23

Fig. 19. A simplified view of a graph time-stepper. During each step of the simulation, the current state is
encoded as a graph (Enc) that is then used to compute the change in state variable between the current and
next timestep (Proc). Finally, the change in state is decoded to the original state space to update the state of
the system (Dec).

encoded explicitly in the time stepper by considering classical Newtonian laws of motion:

x̃i+1 = x̃i + ṽi , (16a)

ṽi+1 = ṽi − ∇V (x)

m
, (16b)

where xi , and vi are positional and velocity vectors of the system. The gradients of the potential
function are equal to the interaction forces F = −∇V (x), whereasm is a vector of “masses.”

This approach is extensively used, mainly in the domain of MD simulations [6, 50, 125, 126, 130,
139]. In modern data-driven MD, the learned neural potentials V (x) replace expensive quantum
chemistry calculations based, for example, on density functional theory (DFT). The advantage of
this approach for large-scale systems, compared to directly learning high-dimensional maps of
the time-steppers, is that the learning of the scalar-valued potential function V (x) : Rn → R rep-
resents a much simpler regression problem. Furthermore, this approach allows prior information
to be encoded in the architecture of the deep potential functions V (x), such as considering only
local interactions between atoms [119], and encoding spatial symmetries [34, 140]. As a result,
these methods are allowing researchers in MD to achieve unprecedented scalability, allowing
simulation of up to 100M atoms on supercomputers [49]. In contrast, training a single naive
time-stepper for such a model would require learning a 300M-dimensional mapping.

4.4.3 Graph Time-Steppers. Many complex real-world systems from social networks and
molecules to power grid systems can be represented as graph structures describing the interac-
tions between individual subsystems. Recent research in graph neural networks (GNNs) em-
braces this idea by embedding or learning the underlying graph structure from data. There exists
a large body of work on GNNs, but covering this is outside the scope of this survey. We refer the
interested reader to overview papers [3, 10, 115, 137, 141, 143]. For the purposes of this section, we
focus solely on GNN-based time-stepper models applied to model dynamical systems [58, 71].

The core idea of using GNNs inside time-steppers is to use a GNN-based pipeline to estimate
the derivatives of the system, as shown in Figure 19. Generally, the pipeline can be split into three
steps; first, the current state of the system is encoded as a graph; next, the graph is processed to
produce an update of the system’s state; and finally, the update is decoded and used to update the
state of the system.

One of the early works includes interaction networks [4] or neural physics engine (NPE) [16]
demonstrating the ability to learn the dynamics in various physical domains in smaller scale di-
mensions, such as n-body problems, rigid-body collision, and non-rigid dynamics. Since then, the
use of GNNs rapidly expanded, finding its use in NODE time-steppers [112] including control

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:24 C. Legaard et al.

inputs [72, 114], dynamic graphs [109], or considering feature encoders enabling learning dynam-
ics directly from the visual signals [134]. Modern GNNs are trained using message-passing algo-
rithms introduced in the context of quantum chemistry application [39]. In GNNs, each node has
associated latent variables representing values of physical quantities such as positions, charges, or
velocities, then in the message-passing step, the aggregated values of the latent states are passed
through the edges to update the values of the neighboring nodes. This abstraction efficiently en-
codes local structure-preserving interactions that commonly occur in the natural world. Although
early implementations of GNN-based time-steppers suffered from larger computational complex-
ity, more recent works [113] have demonstrated their scalability to ever larger dynamical systems
with thousands of state variables over long prediction horizons. Due to their expressiveness and
generic nature, GNNs could in principle be applied in all the time-stepper variants summarized in
this article, some of which would represent novel architectures up to date.

4.5 Uncertainty
So far, we have considered only the cases of modeling systems where noise-free trajectories were
available for training. In reality, it is likely that the data captured from the system does not repre-
sent the true state of the system, x , but rather a noisy version of the original signal perturbed by
measurement noise. Another source of uncertainty is that the dynamics of the system itself may
exhibit some degree of randomness. One cause of this would be unidentified external forces acting
on the system. For instance, the dynamics of a physical pendulum may be influenced by vibrations
from its environment. The following sections introduce several models that explicitly incorporate
uncertainty in their predictions.

4.5.1 Deep Markov Models. A deep Markov model (DMM) [2, 32, 65, 73, 86] is a probabilistic
model that combines the formalism of Markov chains with the use of an NN for approximating
unknown probability density functions. A Markov chain is a latent variable model, which assumes
that the values we observe from the system are determined by an underlying latent variable, which
cannot be observed directly. This idea is very similar to an SSM, the difference being that a Markov
chain assumes that the mapping from the latent to the observed variable is probabilistic and that
evolution of the latent variable is not fully deterministic.

The relationship between the observed and latent variables of a DMM can be specified as follows:

zi+1 ∼ Z (Nt (zi)), (Transition) (17a)
xi ∼ X (Ne (zi)), (Emission) (17b)

where zi represents the latent state vector and xi is the output vector. Here, Z and X represent
probability distributions, commonly Gaussian distributions, modeled by maps NT (zi) or Ne (zi),
respectively.

A natural question to ask is how the observed and latent variables are represented, given that
they are probability density functions and not numerical values—a solution to pick distributions
that can be represented in terms of a few characteristic parameters. For instance, a Gaussian can
be represented by its mean and covariance. The process of performing inference using a DMM is
shown in Figure 20.

An obstacle to training DMMs using supervised learning is that the training data only contains
targets for the observed variables x , not the latent variables z. A popular approach for training
DMMs is using variational inference (VI). It should be noted that VI is a general method for
fitting the parameters of statistical models to data. In this special case, we happen to be applying
it in a case where there is a dependence between samples in time. For a concrete example of a

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:25

Fig. 20. Deep Markov model with an inference network. The value of z0 is estimated by an inference network
Ni based on several samples of the observed variable. The transmission function, approximated by the net-
work Nt , maps the current value of z to a distribution over z one step ahead in time. The emission function,
approximated by Ne , maps each predicted latent variable to a distribution of the corresponding x value in
the original observed space. Note that the output of each network is the parameters of a distribution, which
is then sampled to obtain a value that can be fed into the next stage of the model.

Fig. 21. Latent NODEs. An encoder network is used to obtain a latent representation of the system’s initial
state, z0, by aggregating information from several observations of the systems [x̂w , x̂w−1, . . . , x̂0]. The system
is simulated for multiple steps to obtain [z0, z1, . . . , zn]. Finally, the latent variables are mapped back to the
original state space by a decoder network.

training algorithm based on VI that is suitable for training DMM, we refer to the work of Krishnan
et al. [65].

Although probability distributions in classical DMMs are assumed to be Gaussian, recent ex-
tensions proposed the use of more expressive but also more computationally expensive deep nor-
malizing flows [38, 106]. Another variant of DMM includes additional graph structure for possible
encoding of useful inductive biases [98]. DMMs are typically trained using the stochastic counter-
part of the backpropagation algorithm [107], which is part of popular open source libraries such as
PyTorch-based Pyro [8] or TensorFlow Probability [24]. Applications in dynamical systems model-
ing span from climate forecasting [17], MD [136], or generic time series modeling with uncertainty
quantification [83].

4.5.2 Latent NODEs. Latent NODEs [18] is an extension of NODEs that introduces an encoder
and decoder NN to the model as shown in Figure 21. The core of the idea is that information from
multiple observations can be aggregated by the encoder network Nenc to obtain a latent state
z0, which characterizes the specific trajectory. A convenient choice of encoder network for time
series is an RNN because it can handle a variable number of observations. The system can then be
simulated using the same approach as NODEs to produce a solution in the latent space. Finally, a
decoder network maps each point of the latent solution to the observable space to obtain the final
solution.

Separating the measurement, xi , from the latent system dynamics, zi , allows us to exploit the
modeling flexibility of wider NNs capable of generating more complex latent trajectories. However,
by doing so, it creates an inference problem of estimating unknown initial conditions of the hidden
states for both deterministic [68, 121] and stochastic time-steppers [20, 62, 63, 68].

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:26 C. Legaard et al.

Fig. 22. Bayesian neural ordinary differential equations. The parameters of the network are characterized
by a probability distribution. The parameter distributions are sampled multiple times and used to simulate
the system, producing multiple trajectories as shown on the right. To get a single prediction, the predictions
can be averaged.

Fig. 23. Neural SDEs. The network N is used to approximate the deterministic drift term of the SDE and
the diffusion term is a Wiener process. Multiple trajectories are produced by solving the SDE multiple times,
corresponding to different realizations of the Wiener process.

A difference between latent NODEs and DMMs is that the former treats the state variable as a
continuous-time variable and the latter treats it as discrete-time. In addition, latent NODEs assume
that the dynamics are deterministic.

4.5.3 Bayesian Neural Ordinary Differential Equations. Bayesian neural ordinary differen-
tial equations (BNODEs) [22] combine the concept of a NODE with the stochastic nature of
Bayesian neural networks (BNNs) [53]. In the context of a BNN, the term Bayesian refers to the
fact that the parameters of the network are characterized by a probability density function rather
than an exact value. For instance, the weights of the networks may be assumed to be approximately
distributed according to a multivariate Gaussian.

A possible motivation for applying this formalism is that the uncertainty of the model’s pre-
dictions can be quantified, which would otherwise not be possible. To obtain an estimate of the
uncertainty, the model can be simulated several times using different realizations of the model’s
parameters, resulting in several trajectories as shown in Figure 22. The ensemble of trajectories
can then be used to infer confidence bounds and to obtain the mean value of the trajectories.

A drawback of using BNNs and extensions like BNODEs is that they use specialized training
algorithms that generally do not scale well to large network architectures. An alternative approach
is to introduce sources of stochasticity during the training and inference, such as by using dropout.
A categorization of ways to introduce stochasticity that do not require specialized training algo-
rithms is provided in Section 8 of the work of Jospin et al. [53].

4.5.4 Neural Stochastic Differential Equations. Neural stochastic differential equations
(SDEs) [75] can be viewed as a generalization of an ODE that includes one or more stochastic
terms in addition to the deterministic dynamics, as shown in Figure 23. Like the DTMC, an SDE
often includes a deterministic drift term and a stochastic diffusion term, such as Wiener process:

dX = f (x (t))dt + д(x (t))dWt . (18)

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:27

Table 2. Comparison of Direct-Solution and Time-Stepper Models

Name Advantages Limitations

Direct-solution

+ Easy to apply to PDEs
+ No discretization of time and spatial coordinates
+ No accumulation of error during simulation
+ Parallel evaluation of simulation

- Fixed initial condition
- Fixed temporal and spatial domain
- Difficult to incorporate inputs

Time-stepper
+ Initial condition not fixed
+ Easy to incorporate inputs
+ Leverage knowledge from numerical simulation

- Not trivial to apply to PDEs
- Accumulation of error during simulation
- No parallel evaluation of simulation

Conventionally, SDEs are expressed in differential form unlike the derivative form of an ODE.
The reason for this is that many stochastic processes are continuous but cannot be differentiated.
The meaning of Equation (18) is per definition the integral equation:

x (t) = x0 +

∫ t

0
f (x (s))ds +

∫ t

0
д(x (s))dWs . (19)

As is the case for ODEs, most SDEs must be solved numerically, since only very few SDEs have
analytical solutions. Solving SDEs requires the use of algorithms that are different from those used
to solve deterministic ODEs. Covering the solvers is outside the scope of this work; instead, we
refer to Chapter 9 of the work of Kloeden and Platen [59] for an in-depth coverage. However, in
the context of neural SDEs, we can simply think of the solver as a means to simulate systems with
stochastic dynamics.

There are several choices for how to incorporate the use of NNs for modeling SDEs. For instance,
if the stochastic diffusion term is known, an NN can be trained to approximate the deterministic
drift term in Equation (18) as in the case of the work of Liu et al. [74] and Oganesyan et al. [89]. An-
other approach is to use NNs to parameterize both the drift and diffusion terms [46]. In addition,
there are approaches such as those of Xu et al. [138] that incorporate the idea from both neural
SDEs and BNNs, by modeling both evolution of the state variables and network parameters as
SDEs.

Although neural SDEs provide a strong theoretical framework for modeling uncertainty, they
are complex compared to their deterministic counterparts. One way to address this is to examine
if simpler and computationally efficient mechanisms like injecting noise or using dropout can
achieve some of the same effects as adopting a fully SDE-based framework.

5 DISCUSSION
An important question is how to pick the right type of model for a given application. The two
fundamentally different approaches for simulating a system are (i) having an NN approximate the
solution of the problem, as described in Section 3, or (ii) having an NN approximate the dynamics
of the system, as described in Section 4. Each approach has inherent advantages and limitations,
which can be derived by looking at what the NN is used for within the respective type of model.
A comparison between the two types of models can be seen in Table 2.

In this survey, we described several variants of direct-solution and time-stepper models. The way
that these are presented in the literature often gives the impression that they are fundamentally
different. However, applying them to the ideal pendulum system makes it clear that many models
are closely related, set apart only by a small extension of the original idea. In the case of the direct-
solution models, we observed that the differences between the vanilla direct-solution and the PINN
is the application of physics-based regularization and use of AD for obtaining the velocity. In the
case of time-stepper models, the main differences boil down to the architecture of the NN and the
numerical integration scheme being applied. The ability to pick an NN architecture for a specific

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:28 C. Legaard et al.

application makes it possible to model a wide range of physical phenomena. In addition, the ideas
of one model can easily be transferred to another, allowing for the creation of novel architectures.
This inherent variability makes it difficult to define concrete guidelines for picking a type of model
for a certain application. Instead, we urge the reader to consider what capabilities are needed for
the application and how knowledge of the physics incorporated. The topics described by Figure 2
may serve as a starting point for this.

Evaluating the performance of different models on a benchmark dataset consisting of data from
various dynamical systems would be quite useful. This dataset should be representative of the sys-
tems that are encountered in disciplines such as physics, chemistry, and engineering. This would
allow us to identify general trends and heuristics, which would serve as a starting point for new
practitioners and future applications. Drawing inspiration from other applications of DL, such as
image classification, we see that large image databases have contributed greatly toward develop-
ing better NN architectures. A standardized benchmark dataset is an essential step toward gaining
more insight into which types of models work well. Not only would it allow for a fair comparison
between the NN-based models, but it would also allow us to answer the question of how well these
models work compared to traditional models originating from various fields.

Another valuable contribution, would be to define a procedure for evaluating a model’s ability
to approximate a dynamical system. We are interested in verifying that the model can produce
accurate simulations for the initial conditions we would encounter when using the model. Given
the diverse nature of these dynamical systems, some may be more difficult for an NN to approxi-
mate than others. For instance, a small approximation error in a chaotic system may result in the
accumulation of a large error over time. An interesting research topic is determining metrics that
allow a fair comparison across multiple dynamical systems.

Another valuable contribution would be to develop concrete guidelines on how to train models
of dynamical systems. Finding a rule of thumb for how much training data is necessary to reach a
certain degree of accuracy would make it easier to determine if a data-driven approach is feasible
for a given application. In addition to determining how much data we need, it would be useful to
develop best practices on how to split the data into training and validation sets. For instance, in
the context of training time-stepper models, we may examine which length of trajectories result
in a good ratio between accuracy and training time. Likewise, it would be useful to determine how
to formulate the loss function such that the process of optimizing the model’s parameters is fast
and robust.

6 SUMMARY
In recent years, there has been an increased interest in applying NNs to solve a diverse set of
problems encountered in various branches of engineering and natural sciences. This has resulted in
a wealth of papers, each proposing how a particular physical phenomenon can be simulated using
NNs. As a consequence, the terminology and notation used in each paper vary greatly, making
it difficult to digest for all but experts in the respective field. These papers, often constrained in
space, put great emphasis on describing the application and the physics involved, often at a cost
of omitting details like how the NN was trained and limitations of proposed methods.

This survey provides an easy-to-follow overview of the techniques for simulating dynamical
systems based on NNs. Specifically, we categorized the models encountered in the literature into
two distinct types: direct-solution- and time-stepper models. For each type of model, we provided
a concrete guide on how to construct, train, and use the model for simulation. Starting from the
simplest possible model, we incrementally introduced more advanced variants and established the
differences and similarities between the models. In addition, we supply source code for many of

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:29

the models described in the article, which can be used as a reference for detailed implementation
of each model.

An open research question is determining how well these methods work across a broad set of
problems that are representative of real-world applications. It is our hope that this survey will sup-
port this goal by presenting the most important concepts in a way that is accessible to practitioners
coming from DL as well as various branches of physics and engineering.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2016.

TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 (2016).
[2] Maren Awiszus and Bodo Rosenhahn. 2018. Markov chain neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. 2180–2187.
[3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz

Malinowski, et al. 2018. Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261 (2018).
[4] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray Kavukcuoglu. 2016. Interaction

networks for learning about objects, relations and physics. CoRR abs/1612.00222 (2016).
[5] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2018. Automatic

differentiation in machine learning: A survey. arXiv:1502.05767 [cs, stat] (Feb. 2018).
[6] Jörg Behler. 2015. Constructing high-dimensional neural network potentials: A tutorial review. International Journal

of Quantum Chemistry 115, 16 (2015), 1032–1050. https://doi.org/10.1002/qua.24890
[7] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen. 2019. Invertible

residual networks. In Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, Vol. 97, Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 573–582.

[8] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep universal probabilistic programming.
Journal of Machine Learning Research 20, 1 (2019), 973–978.

[9] Christopher Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, New York, NY.
[10] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. 2021. Geometric deep learning: Grids, groups,

graphs, geodesics, and gauges. CoRR abs/2104.13478 (2021).
[11] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. 2020. Machine learning for fluid mechanics. Annual

Review of Fluid Mechanics 52, 1 (2020), 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214
[12] Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. 2018. Machine learning for

molecular and materials science. Nature 559, 7715 (July 2018), 547–555. https://doi.org/10.1038/s41586-018-0337-2
[13] François Edouard Cellier. 1991. Continuous System Modeling. Springer Science & Business Media.
[14] François Edouard Cellier and Ernesto Kofman. 2006. Continuous System Simulation. Springer Science & Business

Media.
[15] Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. 2018. Multi-level residual networks from

dynamical systems view. arXiv:1710.10348 [cs, stat] (Feb. 2018).
[16] Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. 2016. A compositional object-based

approach to learning physical dynamics. CoRR abs/1612.00341 (2016).
[17] Zhengping Che, Sanjay Purushotham, Guangyu Li, Bo Jiang, and Yan Liu. 2018. Hierarchical deep generative mod-

els for multi-rate multivariate time series. In Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, Vol. 80, Jennifer Dy and Andreas Krause (Eds.). PMLR, 784–793.

[18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2019. Neural ordinary differential equa-
tions. arXiv:1806.07366 [cs, stat] (Dec. 2019).

[19] Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way,
Enrico Ferrero, et al. 2018. Opportunities and obstacles for deep learning in biology and medicine. Journal of the
Royal Society Interface 15, 141 (April 2018), 20170387. https://doi.org/10.1098/rsif.2017.0387

[20] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua Bengio. 2015. A re-
current latent variable model for sequential data. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates.

[21] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. 2020. Lagrangian
neural networks. arXiv:2003.04630 [physics, stat] (July 2020).

[22] Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Krishna Vishal Vemula, and
Chris Rackauckas. 2021. Bayesian neural ordinary differential equations. arXiv:2012.07244 [cs] (March 2021).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:30 C. Legaard et al.

[23] Moritz Diehl, H. Georg Bock, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer. 2002. Real-
time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations.
Journal of Process Control 12, 4 (2002), 577–585. https://doi.org/10.1016/S0959-1524(01)00023-3

[24] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex
Alemi, Matthew D. Hoffman, and Rif A. Saurous. 2017. TensorFlow distributions. CoRR abs/1711.10604 (2017).

[25] Ján Drgoňa, Javier Arroyo, Iago Cupeiro Figueroa, David Blum, Krzysztof Arendt, Donghun Kim, Enric Perarnau
Ollé, et al. 2020. All you need to know about model predictive control for buildings. Annual Reviews in Control 50
(2020), 190–232. https://doi.org/10.1016/j.arcontrol.2020.09.001

[26] Jan Drgona, Aaron R. Tuor, Vikas Chandan, and Draguna L. Vrabie. 2020. Physics-constrained deep learning of
multi-zone building thermal dynamics. arXiv:2011.05987 [cs.LG] (2020).

[27] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented neural ODEs. arXiv:1904.01681 [stat.ML]
(2019).

[28] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M. Oberman. 2020. How to train your neural ODE:
The world of Jacobian and kinetic regularization. arXiv:2002.02798 [stat.ML] (2020).

[29] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. 2020. Simplifying Hamiltonian and Lagrangian neural
networks via explicit constraints. CoRR abs/2010.13581 (2020).

[30] Marco Forgione and Dario Piga. 2020. dynoNet: A neural network architecture for learning dynamical systems.
arXiv:2006.02250 [cs.LG] (2020).

[31] Alexander I. J. Forrester and Andy J. Keane. 2009. Recent advances in surrogate-based optimization. Progress in
Aerospace Sciences 45, 1-3 (Jan. 2009), 50–79. https://doi.org/10.1016/j.paerosci.2008.11.001

[32] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. 2016. Sequential neural models with stochas-
tic layers. arXiv preprint arXiv:1605.07571 (2016).

[33] Jonathan Friedman and Jason Ghidella. 2006. Using model-based design for automotive systems engineering—
Requirements analysis of the power window example. Journal of Passenger Cars: Electronic and Electrical Systems
115 (2006), 516–521. https://doi.org/10.4271/2006-01-1217

[34] Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S. Smith, and Adrian E. Roitberg. 2020. TorchANI: A
free and open source PyTorch-based deep learning implementation of the ANI neural network potentials. Journal of
Chemical Information and Modeling 60, 7 (2020), 3408–3415. https://doi.org/10.1021/acs.jcim.0c00451

[35] Carlos E. García, David M. Prett, and Manfred Morari. 1989. Model predictive control: Theory and practice—A survey.
Automatica 25, 3 (1989), 335–348. https://doi.org/10.1016/0005-1098(89)90002-2

[36] C. W. Gear and O. Osterby. 1984. Solving ordinary differential equations with discontinuities. ACM Transactions on
Mathematical Software 10, 1 (Jan. 1984), 23–44. https://doi.org/10.1145/356068.356071

[37] Daniel Gedon, Niklas Wahlström, Thomas B. Schön, and Lennart Ljung. 2020. Deep state space models for nonlinear
system identification. arXiv:2003.14162 [eess.SY] (2020).

[38] Anubhab Ghosh, Antoine Honoré, Dong Liu, Gustav Eje Henter, and Saikat Chatterjee. 2021. Robust classification
using hidden Markov models and mixtures of normalizing flows. CoRR abs/2102.07284 (2021).

[39] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural message passing
for quantum chemistry. CoRR abs/1704.01212 (2017).

[40] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning, Vol. 1. MIT Press,
Cambridge, MA.

[41] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. 2019. Hamiltonian neural networks. In Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. F. d’Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, 15379–15389.

[42] Batuhan Güler, Alexis Laignelet, and Panos Parpas. 2019. Towards robust and stable deep learning algorithms for
forward backward stochastic differential equations. arXiv:1910.11623 [stat.ML] (2019).

[43] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. 2018.
Learning latent dynamics for planning from pixels. CoRR abs/1811.04551 (2018).

[44] Ernst Hairer and Gerhard Wanner. 1996. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems. Number 14. Springer-Verlag, Berlin, Germany.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition.
arXiv:1512.03385 [cs] (Dec. 2015).

[46] Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, and Samuel Kaski. 2018. Deep learning with differential
Gaussian process flows. arXiv:1810.04066 [cs, stat] (Oct. 2018).

[47] Jeen-Shing Wang and Yi-Chung Chen. 2008. A Hammerstein-W recurrent neural network with universal approxima-
tion capability. In Proceedings of the 2008 IEEE International Conference on Systems, Man, and Cybernetics. 1832–1837.
https://doi.org/10.1109/ICSMC.2008.4811555

[48] Junteng Jia and Austin R. Benson. 2019. Neural jump stochastic differential equations. CoRR abs/1905.10403 (2019).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:31

[49] Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, and Linfeng Zhang. 2020.
Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning.
arXiv:2005.00223 [physics.comp-ph] (2020).

[50] Bin Jiang, Jun Li, and Hua Guo. 2016. Potential energy surfaces from high fidelity fitting of ab initio points: The
permutation invariant polynomial–neural network approach. International Reviews in Physical Chemistry 35, 3 (2016),
479–506. https://doi.org/10.1080/0144235X.2016.1200347

[51] Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul Mangharam. 2014. Closed-loop verification of medical de-
vices with model abstraction and refinement. International Journal on Software Tools for Technology Transfer 16,
2 (April 2014), 191–213. https://doi.org/10.1007/s10009-013-0289-7

[52] Pengzhan Jin, Aiqing Zhu, George Em Karniadakis, and Yifa Tang. 2020. Symplectic networks: Intrinsic structure-
preserving networks for identifying Hamiltonian systems. CoRR abs/2001.03750 (2020).

[53] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed Bennamoun. 2020. Hands-on
Bayesian neural networks—A tutorial for deep learning users. arXiv:2007.06823 [cs, stat] (July 2020).

[54] Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee, Auroop Ganguly,
Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. 2017. Theory-guided data science: A new paradigm for sci-
entific discovery from data. IEEE Transactions on Knowledge and Data Engineering 29, 10 (Oct. 2017), 2318–2331.
https://doi.org/10.1109/TKDE.2017.2720168

[55] Jacob Kelly, Jesse Bettencourt, Matthew James Johnson, and David Duvenaud. 2020. Learning differential equations
that are easy to solve. arXiv:2007.04504 [cs.LG] (2020).

[56] Gaëtan Kerschen, Keith Worden, Alexander F. Vakakis, and Jean-Claude Golinval. 2006. Past, present and future
of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing 20, 3 (2006),
505–592. https://doi.org/10.1016/j.ymssp.2005.04.008

[57] Patrick Kidger, Ricky T. Q. Chen, and Terry Lyons. 2020. “Hey, that’s not an ODE”: Faster ODE adjoints with 12 lines
of code. arXiv:2009.09457 [cs, math] (Sept. 2020).

[58] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. 2018. Neural relational inference
for interacting systems. arXiv:1802.04687 [stat.ML] (2018).

[59] Peter E. Kloeden and Eckhard Platen. 1992. Numerical Solution of Stochastic Differential Equations. Springer.
[60] Ernesto Kofman and Sergio Junco. 2001. Quantized-state systems: A DEVS approach for continuous system simula-

tion. Transactions of the Society for Modeling and Simulation International 18, 3 (2001), 123–132.
[61] Slawomir Koziel and Anna Pietrenko-Dabrowska. 2020. Basics of Data-Driven Surrogate Modeling. Springer Interna-

tional Publishing, Cham, Switzerland, 23–58. https://doi.org/10.1007/978-3-030-38926-0_2
[62] R. Krishnan, U. Shalit, and D. Sontag. 2017. Structured inference networks for nonlinear state space models. In Pro-

ceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI’17). 2101–2109.
[63] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2015. Deep Kalman filters. arXiv:1511.05121 [stat.ML] (2015).
[64] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2016. Structured inference networks for nonlinear state space

models. arXiv:1609.09869 [stat.ML] (2016).
[65] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2016. Structured inference networks for nonlinear state space

models. arXiv:1609.09869 [cs, stat] (Dec. 2016).
[66] Andreas Kroll and Horst Schulte. 2014. Benchmark problems for nonlinear system identification and control using

soft computing methods: Need and overview. Applied Soft Computing 25 (2014), 496–513. https://doi.org/10.1016/j.
asoc.2014.08.034

[67] Kookjin Lee and Eric J. Parish. 2021. Parameterized neural ordinary differential equations: Applications to compu-
tational physics problems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477,
2253 (Sept. 2021), 20210162. https://doi.org/10.1098/rspa.2021.0162

[68] I. Lenz, Ross A. Knepper, and A. Saxena. 2015. DeepMPC: Learning deep latent features for model predictive control.
In Proceedings of the Conference on Robotics: Science and Systems.

[69] Randall J. LeVeque. 2007. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and
Time-Dependent Problems, Vol. 98. SIAM.

[70] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. 2020. Scalable gradients for stochastic
differential equations. arXiv:2001.01328 [cs.LG] (2020).

[71] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. 2018. Learning particle dynamics
for manipulating rigid bodies, deformable objects, and fluids. CoRR abs/1810.01566 (2018).

[72] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, and Russ Tedrake. 2018. Propagation
networks for model-based control under partial observation. CoRR abs/1809.11169 (2018).

[73] Dong Liu, Antoine Honoré, Saikat Chatterjee, and Lars K. Rasmussen. 2019. Powering hidden Markov model by
neural network based generative models. arXiv preprint arXiv:1910.05744 (2019).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:32 C. Legaard et al.

[74] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. 2019. Neural SDE: Stabilizing neural ODE
networks with stochastic noise. arXiv:1906.02355 [cs.LG] (2019).

[75] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. 2019. Neural SDE: Stabilizing neural ODE
networks with stochastic noise. arXiv:1906.02355 [cs, stat] (June 2019).

[76] Lennart Ljung. 2006. Some aspects of non linear system identification. IFAC Proceedings Volumes 39, 1 (2006), 110–121.
https://doi.org/10.3182/20060329-3-AU-2901.00009

[77] Michael Lutter, Christian Ritter, and Jan Peters. 2019. Deep Lagrangian networks: Using physics as model prior for
deep learning. arXiv:1907.04490 [cs, eess, stat] (July 2019).

[78] J. E. Marsden and M. West. 2001. Discrete mechanics and variational integrators. Acta Numerica 10 (May 2001),
357–514. https://doi.org/10.1017/S096249290100006X

[79] Stefano Massaroli, Michael Poli, Michelangelo Bin, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. 2020. Stable
neural flows. arXiv:2003.08063 [cs.LG] (2020).

[80] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. 2021. Dissecting neural ODEs.
arXiv:2002.08071 [cs.LG] (2021).

[81] D. Masti and A. Bemporad. 2018. Learning nonlinear state-space models using deep autoencoders. In Proceedings of
the 2018 IEEE Conference on Decision and Control (CDC’18). 3862–3867.

[82] Sparsh Mittal and Shraiysh Vaishay. 2019. A survey of techniques for optimizing deep learning on GPUs. Journal of
Systems Architecture 99 (Oct. 2019), 101635. https://doi.org/10.1016/j.sysarc.2019.101635

[83] George Montanez, Saeed Amizadeh, and Nikolay Laptev. 2015. Inertial hidden Markov models: Modeling change in
multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

[84] Mehrdad Moradi, Cláudio Gomes, Bentley James Oakes, and Joachim Denil. 2019. Optimizing fault injection in FMI
co-simulation. In Proceedings of the 2019 Summer Simulation Conference. 12. https://doi.org/10.5555/3374138.3374170

[85] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA.
[86] Mohammed Kyari Mustafa, Tony Allen, and Kofi Appiah. 2019. A comparative review of dynamic neural networks

and hidden Markov model methods for mobile on-device speech recognition. Neural Computing and Applications 31,
2 (2019), 891–899.

[87] Oliver Nelles. 2001. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models.
Springer-Verlag, Berlin, Germany. https://doi.org/10.1007/978-3-662-04323-3

[88] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. 2020. On second order behaviour
in augmented neural ODEs. arXiv:2006.07220 [cs.LG] (2020).

[89] Viktor Oganesyan, Alexandra Volokhova, and Dmitry Vetrov. 2020. Stochasticity in neural ODEs: An empirical study.
arXiv:2002.09779 [cs, stat] (June 2020).

[90] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. 2016. Nonlinear systems identification using deep
dynamic neural networks. arXiv:1610.01439 [cs] (Oct. 2016).

[91] Olalekan P. Ogunmolu, Xuejun Gu, Steve B. Jiang, and Nicholas R. Gans. 2016. Nonlinear systems identification using
deep dynamic neural networks. CoRR abs/1610.01439 (2016).

[92] Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. 2020. When are neural ODE solutions proper
ODEs? arXiv:2007.15386 [cs, stat] (July 2020).

[93] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al. 2019.
PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
8026–8037.

[94] Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Leeman, and Matthieu Roy. 2013. Fault injection in
the automotive standard ISO 26262: An initial approach. In Dependable Computing, David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, et al. (Eds.), Vol. 7869. Springer,
Berlin, Germany, 126–133. https://doi.org/10.1007/978-3-642-38789-0_11

[95] Alessio Plebe and Giorgio Grasso. 2019. The unbearable shallow understanding of deep learning. Minds and Machines
29, 4 (Dec. 2019), 515–553. https://doi.org/10.1007/s11023-019-09512-8

[96] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. 2020. Graph
neural ordinary differential equations. arXiv:1911.07532 [cs.LG] (2020).

[97] Tong Qin, Kailiang Wu, and Dongbin Xiu. 2019. Data driven governing equations approximation using deep neural
networks. Journal of Computational Physics 395 (Oct. 2019), 620–635. https://doi.org/10.1016/j.jcp.2019.06.042

[98] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. GMNN: Graph Markov neural networks. In Proceedings of the Inter-
national Conference on Machine Learning. 5241–5250.

[99] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. 2020. SNODE: Spectral discretization of neural
ODEs for system identification. arXiv:1906.07038 [cs.NE] (2020).

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Constructing Neural Network Based Models for Simulating Dynamical Systems 236:33

[100] R. Rai and C. K. Sahu. 2020. Driven by data or derived through physics? A review of hybrid physics guided machine
learning techniques with cyber-physical system (CPS) focus. IEEE Access 8 (2020), 71050–71073.

[101] M. Raissi, P. Perdikaris, and G. E. Karniadakis. 2019. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational
Physics 378 (Feb. 2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

[102] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. 2018. Multistep neural networks for data-driven discov-
ery of nonlinear dynamical systems. arXiv:1801.01236 [nlin, physics:physics, stat] (Jan. 2018).

[103] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. 2020. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science 367, 6481 (Feb. 2020), 1026–1030. https://doi.org/10.1126/science.
aaw4741

[104] Syama S. Rangapuram, Matthias W. Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim Januschowski.
2018. Deep state space models for time series forecasting. In Advances in Neural Information Processing Systems
31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates,
7785–7794.

[105] Saman Razavi, Bryan A. Tolson, and Donald H. Burn. 2012. Review of surrogate modeling in water resources. Water
Resources Research 48, 7 (July 2012), 1–32. https://doi.org/10.1029/2011WR011527

[106] Danilo Jimenez Rezende and Shakir Mohamed. 2016. Variational inference with normalizing flows.
arXiv:1505.05770 [stat.ML] (2016).

[107] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the International Conference on Machine Learning. 1278–1286.

[108] David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin
Ross, et al. 2019. Tackling climate change with machine learning. arXiv:1906.05433 [cs, stat] (Nov. 2019).

[109] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M. Bronstein. 2020.
Temporal graph networks for deep learning on dynamic graphs. CoRR abs/2006.10637 (2020).

[110] Lars Ruthotto and Eldad Haber. 2018. Deep neural networks motivated by partial differential equations.
arXiv:1804.04272 [cs, math, stat] (Dec. 2018).

[111] Lars Ruthotto and Eldad Haber. 2020. Deep neural networks motivated by partial differential equations. Journal of
Mathematical Imaging and Vision 62, 3 (April 2020), 352–364. https://doi.org/10.1007/s10851-019-00903-1

[112] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter W. Battaglia. 2019. Hamiltonian graph networks
with ODE integrators. CoRR abs/1909.12790 (2019).

[113] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia. 2020.
Learning to simulate complex physics with graph networks. CoRR abs/2002.09405 (2020).

[114] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin A. Riedmiller, Raia Had-
sell, and Peter W. Battaglia. 2018. Graph networks as learnable physics engines for inference and control. CoRR
abs/1806.01242 (2018).

[115] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The graph
neural network model. IEEE Transactions on Neural Networks 20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.
2005605

[116] Johan Schoukens and Lennart Ljung. 2019. Nonlinear system identification: A user-oriented roadmap. CoRR
abs/1902.00683 (2019).

[117] M. Schoukens and J. P. Noël. 2017. Three benchmarks addressing open challenges in nonlinear system identification.
IFAC-PapersOnLine 50, 1 (2017), 446–451. https://doi.org/10.1016/j.ifacol.2017.08.071

[118] Dieter Schramm, Wildan Lalo, and Michael Unterreiner. 2010. Application of simulators and simulation tools for the
functional design of mechatronic systems. Solid State Phenomena 166–167 (Sept. 2010), 1–14. https://doi.org/10.4028/
www.scientific.net/SSP.166-167.1

[119] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-
Robert Müller. 2017. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions.
arXiv:1706.08566 [stat.ML] (2017).

[120] Elliott Skomski, Jan Drgona, and Aaron Tuor. 2020. Physics-informed neural state space models via learning and
evolution. arXiv:2011.13497 [cs.NE] (2020).

[121] Elliott Skomski, Soumya Vasisht, Colby Wight, Aaron Tuor, Jan Drgona, and Draguna Vrabie. 2021. Constrained
block nonlinear neural dynamical models. arXiv:2101.01864 [math.DS] (2021).

[122] B. Sohlberg and E. W. Jacobsen. 2008. Grey box modelling—Branches and experiences. IFAC Proceedings Volumes 41,
2 (2008), 11415–11420. https://doi.org/10.3182/20080706-5-KR-1001.01934

[123] Heung-Il Suk, Chong-Yaw Wee, Seong-Whan Lee, and Dinggang Shen. 2016. State-space model with deep learning
for functional dynamics estimation in resting-state fMRI. NeuroImage 129 (2016), 292–307. https://doi.org/10.1016/j.
neuroimage.2016.01.005

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

236:34 C. Legaard et al.

[124] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins. 2020.
Hamiltonian generative networks. arXiv:1909.13789 [cs, stat] (Feb. 2020).

[125] Oliver T. Unke and Markus Meuwly. 2018. A reactive, scalable, and transferable model for molecular energies from
a neural network approach based on local information. Journal of Chemical Physics 148, 24 (2018), 241708. https://
doi.org/10.1063/1.5017898

[126] Oliver T. Unke and Markus Meuwly. 2019. PhysNet: A neural network for predicting energies, forces, dipole moments,
and partial charges. Journal of Chemical Theory and Computation 15, 6 (2019), 3678–3693. https://doi.org/10.1021/acs.
jctc.9b00181

[127] Felipe A. C. Viana, Christian Gogu, and Raphael T. Haftka. 2010. Making the most out of surrogate models: Tricks
of the trade. In Volume 1: 36th Design Automation Conference, Parts A and B. ASMEDC, Montreal, Quebec, Canada,
587–598. https://doi.org/10.1115/DETC2010-28813

[128] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit
Kirsch, et al. 2020. Informed machine learning—A taxonomy and survey of integrating knowledge into learning
systems. arXiv:1903.12394 [cs, stat] (Feb. 2020).

[129] Laura von Rueden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage, and Jochen Garcke. 2020. Combining machine
learning and simulation to a hybrid modelling approach: Current and future directions. Advances in Intelligent Data
Analysis XVIII 12080 (2020), 548–560. https://doi.org/10.1007/978-3-030-44584-3_43

[130] Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adrià Pérez, Nicholas E. Charron, Gianni de Fabritiis, Frank Noé,
and Cecilia Clementi. 2019. Machine learning of coarse-grained molecular dynamics force fields. ACS Central Science
5, 5 (2019), 755–767. https://doi.org/10.1021/acscentsci.8b00913

[131] Sifan Wang, Yujun Teng, and Paris Perdikaris. 2020. Understanding and mitigating gradient pathologies in physics-
informed neural networks. arXiv:2001.04536 [cs, math, stat] (Jan. 2020).

[132] Sifan Wang, Xinling Yu, and Paris Perdikaris. 2020. When and why PINNs fail to train: A neural tangent kernel
perspective. arXiv:2007.14527 [cs, math, stat] (July 2020).

[133] G. Wanner and E. Hairer. 1991. Solving Ordinary Differential Equations I: Nonstiff Problems, Vol. 1. Springer-Verlag.
[134] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti. 2017.

Visual interaction networks: Learning a physics simulator from video. In Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, 4542–4550.

[135] Paul Westermann and Ralph Evins. 2019. Surrogate modelling for sustainable building design—A review. Energy and
Buildings 198 (Sept. 2019), 170–186. https://doi.org/10.1016/j.enbuild.2019.05.057

[136] Hao Wu, Andreas Mardt, Luca Pasquali, and Frank Noe. 2018. Deep generative Markov state models. arXiv preprint
arXiv:1805.07601 (2018).

[137] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A comprehensive
survey on graph neural networks. CoRR abs/1901.00596 (2019).

[138] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, and David Duvenaud. 2021. Infinitely deep Bayesian neural networks with
stochastic differential equations. arXiv:2102.06559 [cs, stat] (Aug. 2021).

[139] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. 2018. Deep potential molecular dynamics: A
scalable model with the accuracy of quantum mechanics. Physical Review Letters 120, 14 (April 2018), 143001. https://
doi.org/10.1103/PhysRevLett.120.143001

[140] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and Weinan E. 2018. End-to-end symmetry
preserving inter-atomic potential energy model for finite and extended systems. arXiv:1805.09003 [physics.comp-ph]
(2018).

[141] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2018. Deep learning on graphs: A survey. CoRR abs/1812.04202 (2018).
[142] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. 2019. Symplectic ODE-Net: Learning Hamiltonian

dynamics with control. CoRR abs/1909.12077 (2019).
[143] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57–81.
https://doi.org/10.1016/j.aiopen.2021.01.001

Received 2 November 2021; revised 23 September 2022; accepted 4 October 2022

ACM Computing Surveys, Vol. 55, No. 11, Article 236. Publication date: February 2023.

Chapter 7

A Universal Mechanism for
Implementing Functional
Mock-up Units

The paper presented in this chapter has been published in the peer-reviewed
conference International Conference on Simulation and Modeling Methodolo-
gies, Technologies and Applications.

144

A Universal Mechanism for Implementing Functional Mock-up Units

Christian Møldrup Legaard1, Daniella Tola1, Thomas Schranz2,
Hugo Daniel Macedo1 and Peter Gorm Larsen1

1DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
2Graz University of Technology, Graz, Austria

{hdm, pgl}@ece.au.dk

Keywords: Co-simulation, Functional Mock-up Interface, Functional Mock-up Unit, Tool.

Abstract: Producing independent simulation units that can be used in a Functional Mock-Up Interface (FMI) setting
is challenging. In some cases, a modelling tool may be available that provides the exact capabilities needed
by exporting such units. However, there may be cases where existing tools are not suitable, or the cost is
prohibitive, thus it may be necessary to implement a Functional Mock-up Unit (FMU) from scratch. Correctly
implementing an FMU from scratch requires a deep technical understanding of the FMI specification and the
technologies it is built upon. A consequence of FMI being a C-based standard is that an FMU must, generally,
be implemented in C or a compiled language that offers a binary-compatible with C such as C++, Rust, or
Fortran. In this paper we present UniFMU, a tool that makes it possible to implement FMUs in any language,
by writing an adapter that can be plugged in to our modular approach. UniFMU also provides both a graphical
user interface and command-line interface feature for generating new FMUs from a selection of programming
languages. We expect our tool and approach to be useful for the simulation community both when porting
simulators written in languages without FMI support, and when implementing or re-implementing such sup-
port.

1 INTRODUCTION

When modelling Cyber-Physical Systems (CPSs), it
is advantageous to model different parts using differ-
ent formalisms and tools and then combine the dif-
ferent models as simulation units using co-simulation
(Gomes et al., 2018). One of the most popu-
lar standards for co-simulation is called the Func-
tional Mock-up Interface (FMI) (Modelica Associa-
tion, 2019), which defines how different simulators
are coupled and a format for packaging simulation
units. A co-simulation combines a number of such
packaged simulation units, termed Functional Mock-
up Units (FMUs), using a master algorithm that com-
bines the simulation of each of the independent simu-
lation units (Thule et al., 2019a; Thule et al., 2019b)
into a joint simulation of the system.

A common way to obtain FMUs is to use FMI-
enabled modelling tools such as OMEdit (Asghar and
Tariq, 2010), Simulink (Simulink09, 2009) or 20-
sim (Controllab Products B.V., 2013) to create models
interactively using a GUI, which can subsequently be
exported as FMUs. While existing tools may cover

the needs of most modelling applications, the need
for specialized FMUs that can only be implemented
by hand will frequently arise. Unfortunately, the pro-
cess of creating an FMU from scratch is cumbersome
and difficult as it requires:

• A deep understanding of the FMI specification.

• The code to be implemented in a C-compatible
language.

• Cross-compilation to support multiple platforms.

• Manual creation and synchronization of the mod-
elDescription.xml file.

• Correct packaging of assets as an FMU archive.

Due to the many pitfalls of this process, it is impracti-
cal for anyone but experts to produce FMUs by hand.

This paper presents an extendable tool called Uni-
versal Functional Mock-up Unit (UniFMU) that facil-
itates the implementation of FMUs in any program-
ming language. Specifically, our contribution is a tool
that provides:

• Support for Python, C# and Java FMUs out of the
box.

Legaard, C., Tola, D., Schranz, T., Macedo, H. and Larsen, P.
A Universal Mechanism for Implementing Functional Mock-up Units.
DOI: 10.5220/0010577601210129
In Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2021), pages 121-129
ISBN: 978-989-758-528-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

121

• An easy to use extension mechanism to provide
support for any language.

• CLI to generate template FMUs using a single
command.

• Pre-built binaries for Windows, Linux and ma-
cOS, eliminating the need for cross-compilation
and complex tool-chain setup.

• Flexible configuration of the execution environ-
ment, such as running inside a Docker container
or activating a virtual environment.

• A work in progress GUI for modifying FMU’s
modelDescription.xml files, eliminating the need
to modify by hand.
The generated FMUs are fully FMI compliant

meaning they can be used in any FMI enabled
co-simulation tool, without making any modifica-
tions. The tool is freely available and can be ac-
cessed in the GitHub repository: https://github.com/
INTO-CPS-Association/unifmu/ .

We expect our tool and approach to be useful for
the simulation community. As we describe in Sec-
tion 5, by implementing one of two available proto-
cols or using one of our language backends a user
porting simulators written in languages without FMI
support can focus on implementing the FMI standard
functionality in his favourite language. Our work
also lowers the complexity required to modeling tool
providers interested in implementing or improve tools
with FMI export capabilities. With our work the tool
can rely on a modular approach where UniFMU deals
with the C API and the export implementation can fo-
cus on providing the model semantics.

In the following, we provide a brief introduction
to related work in Section 2. Then, Section 3 pro-
vides an introduction to FMI with an emphasis on the
implementation of an FMU from scratch. Next, Sec-
tion 4 demonstrates the alternative implementation fa-
cilitated by UniFMU. Next, Section 5 provides the de-
tails of our approach that may be useful to adopters
interested to generate FMUs using our tool. Follow-
ing this Section 6 describes how UniFMU executes
the authors code inside the FMU as well as how the
tool can be extended to support a new language. Sec-
tion 7 then describes how the generated FMUs can be
ran inside a docker container. Finally, Section 8 pro-
vide a few concluding remarks including the planned
future work.

2 RELATED WORK

The difficulty of authoring FMUs by hand has led to
the development of several tools that support the au-

Table 1: Overview of tools that can: (i) import and simulate
FMUs, (ii) export models as FMUs.

Name Language Import Export
FMUSDK C x x

FMI++ C/C++ x x
FMI4j Java x x

JavaFMI Java x x
JFMI Java x

PythonFMU Python x
PyFMU Python x

OvertureFMU VDM x

thoring of FMUs. Typically, each tool focuses on sup-
porting a specific language and implements its own
workflow. A selection of this type of tool is seen in
Table 1.

A drawback of using language specific tools is that
it requires the user to install and learn how to use sev-
eral different tools. Another issue is that these tools
tend to cover only the most popular languages and/or
languages where interoperability with C is easy to im-
plement.

In addition to tools that allow authoring of FMUs,
some simulation tools allow user written code to be
mixed with the code implemented by FMUs. For ex-
ample (fmp, 2021; Widl et al., 2013) allow FMUs to
be imported and simulated in Python. This makes it
possible to insert additional Python code in the simu-
lation loop, essentially implementing a virtual FMU
without the hassle of packaging. Clearly, this ap-
proach for mixing in code is rather limited in terms
of reuse and the inability to mix different languages
in the simulation. Our tool provides a generic way to
generate FMUs that can be used in any FMI enabled
simulation tool.

More relevant are works that provide a separa-
tion between the FMI C-API and the implementation
of the FMU such Proxy-FMU developed in (Hatledal
et al., 2019). Here, the authors propose using remote
procedure calling (RPC) to allow FMUs to run in a
distributed setting, while at the same time removing
restrictions on the FMUs implementation language. A
further development by the same authors is the fmu-
proxify tool that allows existing FMUs to be wrapped
in a way such that it enables distributed co-simulation
in any FMI enabled simulation tool.

Similar to Proxy-FMU our tool also uses RPC as
a mechanism to enable the execution of arbitrary code
inside an FMU. The main contribution of UniFMU is
that the tool ships with support for several languages
that for which template FMUs can quickly be gener-
ated using the CLI. Another distinction is that our tool
makes it easy to run additional commands like select-
ing a specific virtual environment to run the FMU in-

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

122

side or deploying it in a docker container as described
in section 7.

3 CREATING AN FMU IN C

One of the most difficult and time consuming aspects
of FMI based co-simulation is implementing models
and packaging them as FMUs. In many cases, free
or commercial tools are available that automate the
conversion of the model into an FMU. However, in
practice there are situations where no tool covering
your particular needs exists. For instance consider use
cases where an FMU would need to:

• Capture input from a operator through a GUI.

• Interact with remote hardware.

• Integrate data-driven components such as neural-
networks.
In such cases it may be necessary to implement the

FMU from scratch in C. As a running example we in-
troduce a simple Adder-FMU that takes the sum of its
two inputs to form its output, as shown in fig. 1. We
chose this example to illustrate the effort required to
implement even the simplest FMU from scratch. Ad-
ditionally, we omit details of how to implement many
of the specialized FMI methods, that require careful
considerations to memory management. Hopefully,
this will be enough to convince the reader that creat-
ing a more complex FMU from scratch would be even
more challenging and time consuming.

Adder
a

b
c

Figure 1: Adder FMU computes c = a + b.

To understand the challenges of generating an
FMU we first examine the its structure. In plain terms
an FMU is a zip-archive containing a collection of
files that together define the interface and behavior of
a model. A minimal example of how the contents of
the adder FMU zip folder may look like is depicted in
fig. 2.

The folder must contain the functional behavior
of an FMU, which is realized by a shared library
(unifmu.so) located in the binaries directory (one
for each operating system), and a configuration file,
the modelDescription.xml, stored in the root of
the FMU that provides metadata about the unit. At
runtime, the master algorithm dynamically links the
binary for the specific platform allowing the mas-
ter to invoke the appropriate methods to get and set

adder c.fmu
binaries

linux64
adder.so

windows64
adder.dll

darwin64
adder.dylib

modelDescription.xml

Figure 2: Directory structure of adder’s C implementation.

variables of the model through the C-API. To obtain
this library several methods declared in the FMI’s C-
headers must be implemented in a C compatible lan-
guage and compiled separately for every platform that
the FMU is expected to be run on. A small selection
of these is seen in listing 1.

1 typedef struct
2 {
3 fmi2Real a;
4 fmi2Real b;
5 fmi2Real c;
6 } Adder;
7

8 void *fmi2Instantiate(const char *
name ,

9 ...)
10 {
11 Adder *instance = malloc(...);
12 return instance;
13 }
14

15 int fmi2DoStep(void *c, ...)
16 {
17 Adder *fmu = c;
18 fmu->c = fmu->a + fmu->b;
19 return fmi2OK;
20 }

Listing 1: Implementation of Adder in C.

The code shown in the snippet represents a simpli-
fied implementation of the many details and functions
that must be implemented, and in addition to it we
compile a binary for each architecture including the
FMI standard headers as shown in fig. 3. In addition
to the sheer number of functions that have to be im-
plemented, low-level programming considerations of
memory management and ownership of strings makes
it difficult to implement the functions correctly. This
has been described as one of the challenges of creat-
ing FMUs, as the documentation of the FMI standard
is insufficient (Schweiger et al., 2019; Bertsch et al.,
2014).

The binaries provides the functional behavior of
the model, the modelDescription.xml declares the

A Universal Mechanism for Implementing Functional Mock-up Units

123

fmi2Functions.h

adder.c

compile

adder.so

Figure 3: FMI headers and their implementation compiled
into a shared library.

interface and capabilities of the model. Among other
things, this file declares inputs and outputs of the
model, their type and their default value. This in-
formation is used by the master algorithm to connect
pairs of inputs and outputs of models during the con-
figuration of a co-simulation. It should be stressed
that in the general case the binary itself is oblivi-
ous to the contents of the modelDescription.xml
file. As such special care should be taken to en-
sure that the variables declared in the description are
consistent with the implementation. For example if
one of the inputs to the adder is declared as an in-
teger in the description rather than a floating point
number, the binary would still treat it as a floating
point number leading to an incorrect output value.
We discuss the issue of ensuring consistency of the
modelDescription.xml further in section 8.

4 CREATING AN FMU IN UniFMU

UniFMU provides a Command Line Interface (CLI)
that can be used to author FMUs in several popular
languages such as Python, C# and Java as shown in
Table 2, and we plan to expand the list of supported
languages in the future. We distinguish between a
backend and a language, since one language can im-
plement multiple backends. We define a backend as
the method of communication between the UniFMU
wrapper and the FMU. This is described in more de-
tail in Section 5.

Table 2: List of supported languages and backends, * de-
notes default backend.

Language Backends
Python gRPC*, ZeroMQ

C# gRPC
Java gRPC

The CLI is implemented in Python, but it should
be stressed that the generated FMUs do not depend
on Python during simulation (except for FMUs im-
plemented in Python). The tool can be installed using,
pip, the de-facto package manager for Python, using
a single command:

pip install unifmu

The package manager installs the CLI as well as
any resources needed during the generation and run-
time of the FMUs. Alternatively, the tool can be in-
stalled from source using the instructions found in the
associated GitHub repository1.

To generate an FMU you invoke the program
with the sub-command generate with arguments
specifying the language and name of the exported
FMU. For example to generate an FMU named
python adder.fmu in Python the following com-
mand can be used:

unifmu generate python python_adder.fmu

Executing this command creates an FMU with the
file structure shown in fig. 4. The generated FMU is
fully functional and serves as a template that can be
modified to implement the desired behavior for the
model.

adder.fmu
binaries

darwin64

linux64

unifmu.so

windows64

resources

model.pyi

backend grpc.pyb

fmi2.pyb

launch.toml

modelDescription.xml

Figure 4: Python FMU directory tree. b denotes backend,
i denotes implementation.

An important difference between an FMU imple-
mented in C and one implemented using UniFMU
is that the behavior of the model is not defined by
the binaries, but rather by the file(s) stored in the
resources folder. This makes it possible to reuse the
same binaries for all FMUs, independently of the lan-
guage that they are implemented in. These binaries
are pre-compiled and shipped with the tool for Linux,
Windows and macOS. Two benefits of this is that the
FMU can run on all platforms without any additional
effort from the author and that it is not necessary to
install a compiler tool-chain.

The model.py file shown in fig. 4 implements the
functionality of the FMU. Inspecting the code inside
of the model.py FMU, the most relevant function is
do step shown in listing 2.

1https://github.com/INTO-CPS-Association/unifmu

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

124

1 class Model(Fmi2FMU):
2 def __init__(self):
3 self.a = 0.0
4 self.b = 0.0
5 self._update_outputs()
6

7 def _update_outputs(self):
8 self.c = self.a + self.b
9

10 def exit_initialization_mode(
self):

11 self._update_outputs()
12 return Fmi2Status.ok
13

14 def do_step(self , ...):
15 self._update_outputs()
16 return Fmi2Status.ok

Listing 2: model.py implementation.

It contains the addition operation functionality
provided by the FMU, and the variables a and b are
the inputs to the FMU, and the variable c is an output
variable containing the result of the addition of the
two inputs. These variables and their types are all
defined in the modelDescription.xml file.

In addition to the CLI, UniFMU can be launched
as a GUI, seen in fig. 5, using the subcommand:

unifmu gui

The GUI is currently work in progress, and can
so far be used to access the same functionality as the
CLI. The vision is to extend this GUI to be able to
declare and modify the variables corresponding to the
contents of the modelDescription.xml.

Figure 5: GUI for UniFMU.

5 HOW DOES IT WORK?

The main motivation behind UniFMU is to allow ar-
bitrary code written in any language to be executed
within an FMU. The mechanism used by the tool is
to provide a generic binary that spawns a separate
process for each instantiated slave during runtime.

Unlike the binary, the spawned processes aren’t re-
stricted to the narrow set of compiled languages that
are conventionally used to implement FMUs. This
opens the possibility for using interpreted languages
or languages that rely on a garbage collector to man-
age memory.

In order to forward the FMI calls from the mas-
ter algorithm to the concrete implementation provided
slave processes a remote procedure call (RPC) based
on gRPC2 is used to pass commands from the binary
to the slave process. Seen from the perspective of the
master algorithm this additional layer of indirection
is totally opaque, meaning that FMUs produced by
the tool can be used in any FMI compliant simulation
tool.

Comparing this with the conventional approach,
we add an extra layer between the master algorithm
and the FMU itself. The comparison between the
conventional and UniFMU approach is illustrated in
fig. 6. In both approaches the master algorithm com-

Master
algorithm

FMU
binary

Master
algorithm

UniFMU
wrapper FMU slave

C API RPC

Conventional
FMU

UniFMU

C API

Figure 6: Conventional versus UniFMU approach.

municates with the binary files through the C API that
implements the FMI standard. The difference is that
the UniFMU wrapper ”translates” these C API calls
to messages that can be exchanged through a RPC,
such as gRPC or ZeroMQ. Only one of these two
backends is necessary to implement when supporting
a new language. The specific backend used is defined
in the configuration file of the FMU, as shown in the
launch.toml file in listing 3. In addition to the back-
end, the launch.toml file specifies the command used
to start the backend process. It is possible to spec-
ify different commands based on different OSs, since
they may require a different setup.

1 [grpc]
2 linux = ["python3", "backend_grpc.py"]
3 macos = ["python3", "backend_grpc.py"]
4 windows = ["python", "backend_grpc.py"]

Listing 3: launch.toml.

gRPC. Is a RPC that is based on HTTP/2 for trans-
porting messages, and Protocol Buffers (protobuf)3

for describing the information in the messages as a

2https://grpc.io/
3https://developers.google.com/protocol-buffers

A Universal Mechanism for Implementing Functional Mock-up Units

125

schema. An example of the DoStep schema, defined
in the protobuf file, is illustrated in listing 4.

1 service SendCommand{
2 rpc Fmi2DoStep(DoStep)
3 returns (StatusReturn) {}
4 }
5 message DoStep{
6 double current_time = 1;
7 double step_size = 2;
8 bool no_step_prior = 3;
9 }

Listing 4: Structure of DoStep message and Fmi2DoStep
call in protobuf schema.

ZeroMQ. ZeroMQ4 is a networking library that al-
lows messages to be transmitted efficiently across
transport layers such as TCP or as Inter Process Com-
munication. Unlike the gRPC backend there is no
explicit schema-file that dictates the structure of the
messages. Instead, the messages are structured ac-
cording to a simple protocol described in the devel-
oper documentation found in the UniFMU repository.
The serialization of the messages is performed by the
Serde5 library. This makes it possible to automati-
cally generate high-performance serialization for sev-
eral formats such as:

• JSON

• Pickle

• Flatbuffers

For dynamically typed languages such as Python or
JavaScript the schemaless approach may be simpler
to implement.

The main difference between these two backends
is that gRPC uses a protobuf schema, while ZeroMQ
is schemaless. Using a schema to define the messages
and calls between the UniFMU wrapper and the FMU
allows to declare the types of each message. This re-
duces the risk of using incorrect types when imple-
menting the functions, easing the process of creating
FMUs in statically-typed languages.

To understand the flexibility of this approach, it is
useful to examine the process for creating an instance
of an FMU, and the forwarding of the FMI commands
from the binary to the slave instance, as depicted in
fig. 7.

First the master algorithm invokes the
fmi2Instantiate function defined by the binary.
Following this, the wrapper reads the launch.toml
file, which is present in any FMU generated by
UniFMU. This is the configuration file which defines

4https://zeromq.org/
5https://serde.rs/

:unifmu.so

read launch.toml

:Master

slave started

:slave 1

python3
backend_grpc.py

fmi2Ok

fmi2Instantiate

[command.Grpc]

linux=["python3", "backend_grpc.py"]

macos = ...

windows = ...

fmi2EnterInitalizationMode fmi2EnterInitalizationMode

Figure 7: Instantiation of slave and forwarding of FMI
method calls.

the details about which communication backend is
used to communicate with the slave process and
even more importantly the specific command used
to spawn the process. The launch.toml file in fig. 7
shows how the commands defined in the file are used
to instantiate a Python FMU. For example an FMU
implemented in Python using the gRPC backend
would use the following command to launch the slave
process:

python3 backend_grpc.py

Here the backend grpc.py script serves as an im-
plementation by implementing the Fmi2DoStep com-
mand, defined in the protobuf schema shown in list-
ing 4. The DoStep message declares the parameters
used in the Fmi2DoStep command. The complete
protobuf schema can be found in our GitHub repos-
itory.

6 HOW TO EXTEND SUPPORT
TO A NEW LANGUAGE?

There may be cases where a user would like to imple-
ment an FMU in a language not yet supported by the
tool. One of the advantages of UniFMU is that new
languages can be added without making any modifi-
cation to the binaries of the FMU. This section shows
the steps followed to extend the UniFMU support to
include C# by implementing a gRPC backend. We
chose the gRPC option, because a schema based se-
rialization format like the one used by gRPC is es-
pecially suitable for compiled languages as it allows

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

126

messages to be constructed using strongly typed ob-
jects. Following our running example, we will use the
adder introduced in section 3 as a concrete example.

The implementation of the gRPC backend in C#
amounts to implement the remote procedure calls de-
fined in unifmu fmi2.proto file under schemas in the
repository6. The protobuf compiler, protoc, is then
used to compile the UniFMU protobuf schema into
C# code, as illustrated in fig. 8.

unifmu_fmi2.proto protoc

UnifmuFmi2.cs

...

Figure 8: Generate C# files containing the protobuf schema.

The next steps are to create a base class of the
FMI2 functions and implement the functionality of
the adder. This can easily be done by translating these
implementations from Python to C# code. The adder
derives functions from the FMI2 base class, thus the
specific implementations of the FMI2 functions are
implemented in each FMU. After this, the gRPC
server is coded, implementing the functions that were
generated from the protobuf schema and calling them
on the adder. A snippet of the Fmi2DoStep function
implementation in the gRPC server is shown in ??.

1 public override Task <StatusReturn >
2 Fmi2DoStep(DoStep request ,...)
3 {
4 Fmi2Status status =
5 this.fmu.DoStep(
6 request.CurrentTime ,
7 request.StepSize ,
8 request.NoStepPrior);
9 ...

10 }

Listing 5: gRPC server implementation of Fmi2DoStep.

The Fmi2doStep implementation is the only nec-
essary function to implement in the adder, since this
is where the core functionality is described. Listing 6
shows the Fmi2doStep implementation of the adder.

6https://github.com/INTO-CPS-Association/unifmu/

1 public override Fmi2Status DoStep(
2 double currentTime , ...)
3 {
4 this.c = this.a + this.b;
5 return Fmi2Status.Ok;
6 }

Listing 6: C# example of fmi2doStep implementation.

One of the last steps is to implement the hand-
shake connection that will be performed between the
UniFMU wrapper and the FMU itself. This can be
done in the backend grpc.cs file, where the specific
FMU to initialize can also be defined. The last step is
to define the commands to be called for initialization
of the FMU in the launch.toml file.

When generating a new C# FMU, the file structure
will be as illustrated in fig. 9, where the adder.cs file
can be exchanged for any other C# file.

adder csharp.fmu
binaries
resources

schemas
model.csi

backend grpc.csb

fmi2.csb

csharp.csproj
launch.toml

modelDescription.xml

Figure 9: C# FMU directory tree. b denotes backend,
i denotes implementation.

As we have demonstrated in this section, there is
no need to write any C/C++ code when creating a new
backend for UniFMU. The work amounts to imple-
ment a gRPC server using the protobuf schema and
an abstract class containing the FMI2 function decla-
rations.

7 EXECUTING FMUs INSIDE
DOCKER CONTAINER

Invoking code from within an FMU needs the host
machine to provide the necessary runtime environ-
ment to do so. For example, running python scripts re-
quires that the host machine has a compatible python
interpreter and all libraries used in the scripts in-
stalled. This limits the portability of the FMUs, espe-
cially when shared between different host machines,
potentially running different operating systems.

To mitigate this issue runtime dependencies can
be packaged into a virtualization environment such

A Universal Mechanism for Implementing Functional Mock-up Units

127

as docker7. A detailed description of the extension
and more advanced topics, such as remote deploy-
ment, building and deployment settings can be found
in (Schranz et al., 2021). In essence, to dockerize
there is no need to change the wrapper code, all of the
necessary actions are performed using a short script
(run.sh for unix, run.ps1 for Windows), as seen in
Listing ??. The script builds a docker image using
the FMUs global unique identifier and runs it. Once
the wrapper disconnects, the process terminates, the
container is stopped and disposed. The actions within
the Dockerfile depend on the choice of backend. An
adaptation to the framework to support all backends
is under development.

To dockerize the FMU, the commands given in the
launch.toml can be set to run a shellscript:

1 [grpc]
2 linux = ["/bin/bash", "run.sh"]
3 macos = ["/bin/bash", "run.sh"]
4 windows = ["powershell", ".\\run.ps1"]

1 #!/bin/sh
2 ...
3 # build image
4 docker build -t "$uid" .
5 # run container
6 docker run --net=host --rm ...

Listing 7: Shell script, run.sh, used to deploy docker con-
tainer on unix.

8 CONCLUDING REMARKS AND
FUTURE WORK

In this paper we have introduced the tool UniFMU
that makes it possible to implement FMUs in several
languages with built-in support by the tool. We have
demonstrated the process of creating an FMU in a
supported language, Python, and have demonstrated
the process for extending the tool to support C#.
This makes it possible to produce FMUs with limited
knowledge of the internal workings and with limited
knowledge of C. In the future we hope to be able to
use a similar Java extension to enable the Overture
FMU (Thule et al., 2018) export to be moved over
to the Visual Studio Code VDM substantiation (Rask
et al., 2020).

One issue not discussed in the paper is perfor-
mance. Invoking functions of an FMU using RPC in-
stead of calling them directly through the C-ABI in-
curs a performance cost. As part of (Hatledal et al.,

7https://www.docker.com/

2019) the authors provide the results of experiments
where the total simulation time of multiple FMUs is
measured for the two approaches. The results seem
to indicate that there is an almost constant overhead
per RPC call resulting in the largest impact on mod-
els that must be simulated with small step sizes. A
possible way to reduce the performance overhead is
to reduce the total number of RPC calls. For example
several FMI calls made in between two fmi2DoStep
calls could be grouped and sent as a single message,
since the outputs would not change in between.

UniFMU provides a way to package and execute
arbitrary code inside of an FMU. However, it does not
directly provide a way to ensure consistency between
the model description and the code. Other works
like (Legaard et al., 2020; Hatledal et al., 2020) solve
this issue by declaring the interface in the implemen-
tation of the FMU and using code generation targeted
for specific languages to export the model descrip-
tion. This approach cannot readily be applied for a
large number languages without implementing with-
out implementing code generation for each language
individually. There is a work in progress GUI, where
it is possible to import the FMU, and using the editor
manage the input and output variables of the model
description, as shown in fig. 5.

In addition to the standalone GUI for the tool, it is
possible to bundle the offering in the INTO-CPS As-
sociation services, for instance in the front-end used
to setup and launch co-simulations using MAESTRO,
the INTO-CPS Application (Macedo et al., 2020; Ta-
lasila et al., 2020). It is also a possibility to enable
the Model-Based Design of Cyber-Physical Systems
community to use and make the tool available in the
HUBCAP project cloud platform (Larsen et al., 2020;
Kulik et al., 2020).

ACKNOWLEDGEMENTS

We acknowledge the funding from the Poul Due
Jensen Foundation for funding the project Digital
Twins for Cyber-Physical Systems (DiT4CPS).

REFERENCES

(2021). CATIA-Systems/FMPy. CATIA Systems.
Asghar, S. A. and Tariq, S. (2010). Design and implemen-

tation of a user friendly OpenModelica graphical con-
nection editor. page 81.

Bertsch, C., Ahle, E., and Schulmeister, U. (2014). The
Functional Mockup Interface – seen from an industrial
perspective. pages 27–33.

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

128

Controllab Products B.V. (2013). http://www.20sim.com/.
20-sim official website.

Gomes, C., Thule, C., Broman, D., Larsen, P. G., and
Vangheluwe, H. (2018). Co-simulation: a Survey.
ACM Comput. Surv., 51(3):49:1–49:33.

Hatledal, L., Zhang, H., and Collonval, F. (2020). Enabling
python driven co-simulation models with pythonfmu.
pages 235–239.

Hatledal, L. I., Styve, A., Hovland, G., and Zhang,
H. (2019). A Language and Platform Independent
Co-Simulation Framework Based on the Functional
Mock-Up Interface. IEEE Access, 7:109328–109339.

Hatledal, L. I., Styve, A., Hovland, G., and Zhang,
H. (2019). A Language and Platform Independent
Co-Simulation Framework Based on the Functional
Mock-Up Interface. IEEE Access, 7:109328–109339.
Conference Name: IEEE Access.

Kulik, T., Macedo, H. D., Talasila, P., and Larsen, P. G.
(2020). Modelling the HUBCAP Sandbox Architec-
ture In VDM – a Study In Security. In Fitzgerald, J. S.
and Oda, T., editors, Proceedings of the 18th Interna-
tional Overture Workshop, pages 20–34. Overture.

Larsen, P. G., Macedo, H. D., Fitzgerald, J., Pfeifer, H.,
Benedikt, M., Tonetta, S., Marguglio, A., Gusmeroli,
S., and Jr., G. S. (2020). An Online MBSE Collabo-
ration Platform. pages 263–270. INSTICC, Proceed-
ings of the 10th International Conference on Simula-
tion and Modeling Methodologies, Technologies and
Applications - Volume 1: SIMULTECH.

Legaard, C. M., Gomes, C., Larsen, P. G., and Foldager,
F. F. (2020). Rapid Prototyping of Self-Adaptive-
Systems using Python Functional Mockup Units.
SummerSim ’20. ACM New York, NY, USA.

Macedo, H. D., Rasmussen, M. B., Thule, C., and Larsen,
P. G. (2020). Migrating the INTO-CPS Application
to the Cloud. In Sekerinski, E., Moreira, N., Oliveira,
J. N., Ratiu, D., Guidotti, R., Farrell, M., Luckcuck,
M., Marmsoler, D., Campos, J., Astarte, T., Gonnord,
L., Cerone, A., Couto, L., Dongol, B., Kutrib, M.,
Monteiro, P., and Delmas, D., editors, Formal Meth-
ods. FM 2019 International Workshops, pages 254–
271, LNCS 12233. Springer-Verlag.

Modelica Association (2019). Functional Mock-up Inter-
face for Model Exchange and Co-Simulation. https:
//www.fmi-standard.org/downloads.

Rask, J. K., Madsen, F. P., Battle, N., Macedo, H. D., and
Larsen, P. G. (2020). Visual Studio Code VDM Sup-
port. In Fitzgerald, J. S. and Oda, T., editors, Pro-
ceedings of the 18th International Overture Workshop,
pages 35–49. Overture.

Schranz, T., Alfalouji, Q., Falay, B., Legaard, C., Wilfling,
S., and Schweiger, G. (2021). Coupling physical and
machine learning models: Case study of a residential
building. In 14th International Modelica Conference
(Submitted Manuscript).

Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schöggl,
J.-P., Posch, A., and Nouidui, T. (2019). Functional
Mock-up Interface: An empirical survey identifies re-
search challenges and current barriers.

Simulink09 (2009). Simulink - Sim-
ulation and Model-Based Design.
http://www.mathworks.com/products/simulink/.

Talasila, P., Sanjari, A., Villadsen, K., Thule, C., Larsen,
P. G., and Macedo, H. D. (2020). Introducing Test
Driven Development and Upgrades to the INTO-CPS
Application. In Cleophas, L. and Massink, M., editors,
Software Engineering and Formal Methods. SEFM
2020 Collocated Workshops, pages 311–317, Cham.
Springer International Publishing.

Thule, C., Lausdahl, K., Gomes, C., Meisl, G., and Larsen,
P. G. (2019a). Maestro: The INTO-CPS co-simulation
framework. Simulation Modelling Practice and The-
ory, 92:45–61.

Thule, C., Lausdahl, K., and Larsen, P. G. (2018). Over-
ture FMU: Export VDM-RT Models as Tool-Wrapper
FMUs. In Pierce, K. and Verhoef, M., editors, The
16th Overture Workshop, pages 23–38, Oxford. New-
castle University, School of Computing. TR-1524.

Thule, C., Palmieri, M., Gomes, C., Lausdahl, K., Macedo,
H. D., Battle, N., and Larsen, P. G. (2019b). To-
wards Reuse of Synchronization Algorithms in Co-
simulation Frameworks. In Co-Sim-19 workshop.

Widl, E., Müller, W., Elsheikh, A., Hörtenhuber, M., and
Palensky, P. (2013). The FMI++ library: A high-
level utility package for FMI for model exchange.
In 2013 Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), pages 1–
6.

A Universal Mechanism for Implementing Functional Mock-up Units

129

Chapter 8

Rapid Prototyping of
Self-Adaptive-Systems using
Python Functional Mock-up
Units

The paper presented in this chapter has been published in the peer-reviewed
conference of SummerSim: Summer Simulation Multi-Conference

154

RAPID PROTOTYPING OF SELF-ADAPTIVE-SYSTEMS
USING PYTHON FUNCTIONAL MOCKUP UNITS

Christian Møldrup Legaard
Cláudio Gomes

Peter Gorm Larsen

DIGIT, Department of Engineering, Aarhus University
Finlandsgade 22, 8200 Aarhus N, Denmark

{cml,claudio.gomes,pgl}@eng.au.dk

Frederik Forchhammer Foldager

Agrointelli
Agro Food Park 13, 8200 Aarhus N

Denmark
ffo@agrointelli.com

SummerSim, July 20-22, 2020, Madrid, Spain; ©2020 Society for Modeling & Simulation International (SCS)

ABSTRACT

During the development of Cyber-Physical Systems (CPSs), it is crucial to enable efficient collaboration
between different disciplines. Co-simulation plays a key role in this by allowing the system as a whole to be
simulated by composing simulations of its parts. The ability to do this coupling relies on the models adhering
to a well-defined interface. The Functional Mockup Interface (FMI) defines this interface and the models
that implemented it are called Functional Mockup Units (FMUs). While a wealth of specialized simulation
tools can generate FMUs, they are often commercial and do not support of complex software prototypes.
Rather than implement these as FMUs from scratch (FMI requires expertise in C), losing valuable time,
the contribution presented in this paper is a tool that allows FMUs to be implemented rapidly in Python.
The advantages of this approach are demonstrated in an industrial use case, where a tracking simulator is
implemented as an FMU.

Keywords: Python, prototyping, self-adaptive system, co-simulation, FMI

1 INTRODUCTION

The global competition for intelligent physical products is increasing and as a consequence, the time to mar-
ket becomes of prime importance. Different disciplines have different traditions for how they can model and
analyse the properties that are most important for them. Cyber-Physical Systems (CPSs) are heterogeneous
and involve many different disciplines and thus facilitating optimal collaboration between such disciplines
is essential (Lee 2008). Here co-simulations can be an effective technique to couple the different models
together at the early stages of development, such that it is possible to analyse the overall CPS performance
based on the complex interactions between its components (Gomes et al. 2018).

Since the different models typically make use of different branches of mathematics, the interoperability be-
tween them is typically ensured using different kinds of standards. Thus each individual model needs to be
represented as a stand-alone simulation unit with a standardised interface. In this work we make use of the
Functional Mockup Interface (FMI) version 2.0 for co-simulation (FMI v. 2.0 2014) where such units im-
plementing the FMI standard are called Functional Mockup Units (FMUs). Numerous legacy modeling and
simulation tools can export their models as FMUs. The contribution presented here complements such tools
enabling faster production of FMUs using the Python programming language to support faster collaboration
between different disciplines.

Legaard, Gomes, Foldager and Larsen

We argue that this prototyping technology is particularly valuable in the early stages of co-simulation (as
in agile methodologies) but also for prototyping monitoring and self-adaptive systems (Weyns 2019). The
main advantage of our tool is that it does not require compilation, and is platform-independent. Furthermore,
Python has a vast ecosystem of numerical libraries, making it the ideal language for prototyping for the
aforementioned systems.

After this introduction, Section 2 provides the necessary background to be able to understand the main
contribution of this paper which is presented in Section 3. Afterward, Section 4 presents a case study
using the new contribution to produce an online tracking simulator of an unmanned agricultural robot.
Finally, Sections 5 and 6 provide an overview of related work and a few concluding remarks about this work
respectively.

2 BACKGROUND

2.1 Co-simulation

Co-simulation is a technique that enables the simulation of an entire system by simulating its individual parts
(Kübler and Schiehlen 2000). Given the wide range of Modelling and Simulation (M&S) tools, standardized
interfaces have been developed to enable these different tools to communicate their simulation results. One
such interface is the Functional Mockup Interface (FMI) (Blochwitz et al. 2012).

The FMI defines a C API that binaries exported from each M&S have to implement. Each binary exported
from a M&S tool corresponds to a subsystem that has inputs, internal behavior, and outputs. Other software
can communicate with such a binary by setting inputs, asking it to compute the internal behavior, and
querying its outputs, as illustrated in Figure 1a. To convey this information, FMI standardizes an XML
representation of the inputs, outputs and internal structure of the binary. The binary and metadata are
packaged in a zip file with the fmu extension. The FMI denotes these packages as Functional Mockup
Units (FMUs). Figure 1b illustrates the typical structure of an FMU.

fmi2GetReal

fmi2DoStep

fmi2SetReal

fmi2GetReal

fmi2DoStep

Orchestrator A B

(a) Example master algorithm.

SineGenerator.fmu/
binaries

linux64
pyfmu.so

win64
pyfmu.dll

modelDescription.xml
resources

sinegenerator.py
slave_configuration.json

(b) File structure a FMU.

Figure 1: Use of FMI functions and FMU structure.

Legaard, Gomes, Foldager and Larsen

2.2 Self-Adaptive Systems

Self-adaptation is increasingly recognized as important not just for software systems (Weyns 2019) but also
for cyber-physical systems (Zhou et al. 2019, Kritzinger et al. 2018). In its essence, a self-adaptive system
can perform well in an environment that is difficult to model at the design time of the system. For example,
the case study we introduce in Section 4 is a robot that functions in a wide range of soil types, often different
than the ones available for testing at design time.

The implementation of a self-adaptive system comprises techniques such as calibration of models (to enable
remote sensing of the system’s state), and optimization (to determine the best course of action). We refer
to the cited surveys for more details. We argue that prototyping such a system requires access not just to
detailed models of the physical dynamics of the system, but also to a high-level language, that provides
plenty of numerical libraries. FMI provides easy access to FMUs and therefore to the dynamics of the
system, but, to the best of our knowledge, there are not many M&S tools that have a vast library for numerical
computing.

Despite the simple interface that the FMI provides (a factor that has contributed to its wide adoption), if one
needs to have a custom FMU, one needs to program it in the C language. We argue that C is not the right
level of abstraction to prototype self-adaptation processes.

In the next section, we describe the implementation of a generation tool that produces FMUs that are speci-
fied in Python, while at the same time implementing the FMI standard. Such FMUs can be changed without
requiring recompilation of the binaries, and allow the use of any Python libraries for the computation (pro-
vided these are either packaged with the FMU, or available in the execution platform).

3 CONTRIBUTIONS

The contribution of this paper is PyFMU (https://github.com/INTO-CPS-Association/pyfmu), a tool which
enables rapid development of FMUs using Python. The process of exporting the FMU is fully automated by
the tool and requires little knowledge of the FMI Standard and no knowledge of C. The goal of the tool is
to enable rapid prototyping of FMUs for a wide range of applications. First, we demonstrate the process of
creating an FMU from scratch, in Section 3.1. Following this, we describe the mechanism the tool uses to
export and execute the Python code, in Section 3.2.

The FMUs and code used to produce the results can be found as an attachment to the repository’s releases:
https://github.com/INTO-CPS-Association/pyfmu/releases/tag/0.0.4

3.1 Creating an FMU

A simple sine wave generator is used as an example. The generator has a single output y, and three parame-
ters: amplitude a, frequency ω and phase θ . The output is determined as follows:

y = asin(ωt +θ).

The process of creating an FMU using the tool is split into 3 steps, as seen in Figure 2. The first and last
steps are carried out by a command-line interface (CLI) supplied with the tool. To create a new project, the
sub-command generate is used:

pyfmu generate -p SineGenerator

Legaard, Gomes, Foldager and Larsen

(1) Generate (3) Export

(2) Implement

Project
(4) Simulate

FMU

Figure 2: This figure illustrates the typical workflow of when using the tool. The first step is to generate a
project. Next, the FMU is implemented in Python. Finally, the project is exported as an FMU, which can
then be used as part of a co-simulation.

The command creates a new directory named SineGenerator referred to as a project. By default, the tool
generates the templates of the files needed to start implementation. In this case, the project structure is:

SineGenerator/
project.json

resources

sinegenerator.py

The Python script is referred to as the slave script. Inside the slave script, the class SineGenerator is
defined, which is referred to as the slave class. When the FMU is instantiated it is this class that acts as
its implementation. The purpose of the project.json file is to specify which class to instantiate if multiple
scripts are present.

SineGenerator implementation
1 class SineGenerator(Fmi2Slave):
2 def __init__(self):
3

4 author = "Christian Møldrup Legaard"
5 modelName = "SineGenerator"
6 description = "A single output sine-wave generator"
7

8 super().__init__(
9 modelName=modelName,

10 author=author,
11 description=description)
12

13 self.register_variable('y','real','output')
14 self.register_variable('w','real','parameter','fixed',start=1)
15 self.register_variable('a','real','parameter','fixed',start=1)
16 self.register_variable('p','real','parameter','fixed',start=0)
17

18 def setup_experiment(self, start_time, end_time, tolerance):
19 self._start_time = start_time
20

21 def exit_initialization(self):
22 self.y = self.a * sin(self.w * self._start_time + self.p)
23

24 def do_step(self, current_time, step_size, no_step_prior):
25 self.y = self.a * sin(self.w * current_time + self.p)

Figure 3: Typical FMU structure. The highlights show the lines that were added to the generated code.

The tool also generates the initial content of these files, which minimizes the amount of code the user has to
write. For reference see Figure 3 which shows a full implementation of the SineGenerator. To implement the
FMU, one needs to define its inputs, outputs, and parameters. In FMI standard these entities are generalized

Legaard, Gomes, Foldager and Larsen

as variables. To declare a new variable the register_variable function is used. For example the output y, is
defined as: self.register_variable('y','real','output').

The SineGenerator is peculiar, in the sense that it does not take any inputs from other FMUs. Had this not
been the case an input x, could easily be defined as self.register('x','real','input',start=0). Note that
start values must be declared for inputs according to the FMI specification. PyFMU performs validation on
the variables to ensure that the model adheres to the FMI specification, even when executed as pure Python
code.

Next, the behavior of the FMU must be implemented. This is done by defining special methods in the slave
class, corresponding to the methods of the FMI interface. These are invoked whenever the matching function
on the FMI interface is called. For example, to define the equivalent of the fmi2DoStep function of the FMI
standard (recall Figure 1a), the do_step method is defined as in Figure 3. The correspondence between
the FMI function and the Python counterparts is shown in Figure 4c.

The final stage is to export the project, producing in an FMU with a structure as shown in Figure 1b.
Exporting the project as an FMU is done using the export command:

pyfmu export -p /SineGenerator -o somedir/SineGenerator

3.2 Implementation

Recall the SineGenerator example, its structure is seen in Figure 1b. PyFMU uses an approach where
generic binaries pyfmu.so/dll are pre-compiled and used by all exported FMU. It acts as a "wrapper"
around the Python code implementing the FMU. Whenever a call is made to FMI interface the call is passed
to a Python interpreter which is running inside the FMU, as illustrated in Figure 4a. The tool ships with
pre-compiled binaries for several platforms, ensuring that an FMU produced on one platform, will also run
on the others. The main advantage of this approach is that it eliminates the need for the user to ever deal
with FMU compilation issues.

The Python interpreter is included in the binary using an approach referred to as embedding. That is, the
Python interpreter is embedded into the C/C++ program, by including its headers and linking the library.
This makes it possible to programmatically interact with Python, for example by importing modules, instan-
tiating objects and calling functions. Figure 4b shows how the _doStep method is called on a Python object
from C.

The same mechanism is used for creating instances of the slave class within the Python interpreter. To
instantiate the objects within the interpreter the binary reads the name of the slave script and class from the
slave_configuration.json file. The process of generating the modelDescription.xml file is fully automated by
the tool. Rather than going through the trouble of reading and parsing the script as a text file, the tool simply
creates an instance of the slave class. The tool then inspects the declared variables in an object-oriented
fashion and creates the appropriate XML elements in the model description. This approach has the added
benefit that the full flexibility of Python can be used to generate complex FMU interfaces with ease. For
example, Figure 5 shows how the SineGenerator may be modified to add multiple outputs.

4 CASE STUDY: PROTOTYPING A TRACKING SIMULATOR

In the process of moving towards unmanned agricultural operations, novel monitoring systems are needed to
account for unforeseen events occurring during field operations. For example, the soil surface characteristics
may vary locally based on topography, soil composition, and moisture content. The variations can reduce the

Legaard, Gomes, Foldager and Larsen

fmi2DoStep(...)
pyfmu.dll

fmi2Instantiate("s1")

sinegenerator.py

binaries resources

python3.dll

s1

externalslave_configuration.json

(a) Illustration of the process used to instanti-
ate Python slave inside the FMU and how sub-
sequent calls are propagated to the slave. When
fmi2Instantiate is called for the first time the binary
starts a Python interpreter. Following this, the bi-
nary reads the name of the script and which class
to instantiate from the slave_configuration.json file.
This information is used to create an instance of the
class inside the interpreter. After this calls to the FMI
component are propagated to the newly instantiated
Python object.

1 #include <Python.h>
2 ...
3 PyObject* f = PyObject_CallMethod(
4 pInstance_,
5 "_do_step",
6 "(ddO)",
7 currentTime,
8 stepSize,
9 noSetPrior);

(b) Invoking the slave’s doStep from the wrapper.

fmi2Functions.h SineGenerator

fmi2DoStep do_step

fmi2SetupExperiments setup_experiments

fmi2ExitInitializationMode exit_initialization

(c) Examples of FMI function mapping to the corre-
sponding slave functions.

Figure 4: Mechanism used to wrap execute Python code within the FMUs.

1 def __init__(self):
2 ...
3 n_outputs = 3
4 for i in range(n_outputs):
5 self.register_variable(f'y{i}','real','output')

Figure 5: Programmatic variable declaration.

traction of the wheels and consequently affect motion and maneuverability. With better monitoring systems,
the vehicle control system can adapt the steering despite these variations. In this section, we describe how
PyFMU allowed us to leverage the full flexibility of Python to quickly prototype a tracking simulator of an
agricultural autonomous vehicle, called Robotti. Initial modeling efforts of the system were described in
(Foldager et al. 2018).

The goal of the tracking simulator is to detect changes in the reference system’s dynamics caused by changes
in the environment, during a single simulation, as shown in Figure 6a. Asides from detecting that a change
has happened, the tracking simulator attempts to find a new set of parameters θ ∗ which would explain the
observed change in behavior. This is made possible by the fact that the tracking simulator itself contains a
simplified dynamical model of the Robotti, referred to as the tracking model. During co-simulation, both
models are run in parallel producing two separate trajectories as shown in Figure 6b.

Undisturbed, the two trajectories will evolve in an almost similar fashion. However, the moment that the
reference system parameters change the two trajectories will start to diverge and the tracking simulator will

Legaard, Gomes, Foldager and Larsen

trigger a re-calibration. We first give a brief description of Robotti and how it is modeled in this case study.
Then we describe the implementation of the tracking simulator using PyFMU.

�, �, �

Reference

(�)�∗

Tracking Model

Environment
!

Monitor

�(�)

(a) Co-simulation scenario of tracking simulator. Each box
corresponds to an FMU and the arrows identify connec-
tions between them. The reference represents a black-box
model of the physical system, which is influenced by a set
of parameters controlled by the environment θ , which vary
over time. The goal of the tracking model is to match the
behavior of the reference as close as possible. It does so by
finding the set of parameters θ ∗ which results in an trajec-
tory as close as possible to the reference system.

tracking
reference!

(b) Illustration of the online calibration process. The
reference and tracking models share the same trajec-
tory until an event occurs which causes a change in
the reference model. After some time the discrepancy
between the two models has grown sufficiently large
to trigger a recalibration. The recalibration process
finds the parameters θ ∗ which results in the trajec-
tory closest to the reference (dotted blue line), within
a bounded interval of time (e.g., since the discrep-
ancy occurred). Following this the tracking model
resumes form the end of the optimal trajectory (solid
blue line).

Figure 6: Tracking simulator overview.

4.1 Robotti

The agricultural robotic vehicle is a four-wheeled Ackermann steered autonomous system. The vehicle is
designed as a generic platform applicable for various agricultural operations such as weeding, spraying,
or cultivation. The navigation and steering control are performed on-board on a ROS-based system and is
equipped with various sensors such as RTK-GPS, LiDAR, IMU and encoders. A photo of Robotti is shown
in Figure 8.

For the tracking simulator, we use a bicycle dynamic model adapted from (Kong et al. 2015, Rajamani
2011), and given as follows. We assume the longitudinal velocity ẋ is constant and model the lateral dy-
namics. The lateral and rotational acceleration were obtained by summing up the forces and moments at the
center of the vehicle. The orientation and position were obtained by numerically integrating Equations (8)
and (9) twice. Fc f is the sum of the local tire forces on the front and rear wheels calculated by the product
of the slip angle α and the tire stiffness coefficient. The slip angles are calculated as a function of the orien-
tation of the vehicle ψ , the velocity components ẋ and ẏ and the steering angle on each of the front wheels
δl/r where subscripts indicate left and right. l f and lr are the distances between the center of gravity of the
vehicle and the front and rear wheels in the longitudinal direction as shown in Figure 7. The equations of

Legaard, Gomes, Foldager and Larsen

the model are summarized in Equations (1) to (9), and parameters and their order of magnitude are shown
in Table 1

Front tire slip angle α f = δ f − (ẏ+ l f ψ̇)/ẋ (1)

Rear tire slip angle αr = (ẏ− lrψ̇)/ẋ (2)

Lateral tire force at a front wheel Fc f =Cα f α f (3)

Lateral tire force at a rear wheel Fcr =Cαr(−αr) (4)

Longitudinal acceleration ẍ = ψ̇ ẏ+a (5)

Lateral acceleration ÿ =−ψ̇ ẋ+(1/m)(Fc f cos(δ f)+Fcr) (6)

Yaw acceleration ψ̈ = (1/Izz)(l f Fc f − lrFcr) (7)

Velocity in the global frame Ẋ = ẋcos(ψ)− ẏsin(ψ) (8)

Velocity in the global frame Ẏ = ẋsin(ψ)+ ẏcos(ψ) (9)

δ f l

δ f r

δr = 0

X

ψ

Y

v β

lr
l f

Ff r

Ff l

Frl

Frr

α f l

Figure 7: Sketch of the Robotti

Figure 8: Robotti in the field. Photo: Agrointelli.

Parameter Magnitude Description

l f 100 Distance COG to front wheel
(m).

m 103 Mass of the vehicle.
Izz 103 Rotational inertia.
Cα f/r 102 Tire cornering stiffness.

Table 1: Parameter and their magnitudes (specific values
are omitted to protect company property)

For simplicity, the surface-tire interaction was modeled by a linear relationship between the tire cornering
stiffness and the tire slip angle. In the actual model of the Robotti, this interaction is modeled by non-
linear relationships that include the surface friction coefficient, the tire normal load, and the steering angle.
Moreover, the dynamics of Robotti were derived for a four-wheel vehicle as schematically shown in Figure 7.
The actual Robotti model was implemented using the 20-sim tool (Broenink 1997, Kleijn 2009) and exported
as an FMU.

4.2 Results And Discussion

The purpose of the prototyped tracking simulator is to show when the model proposed in Equations (1) to (9)
fails to accurately represent reality. This is achieved by constantly monitoring the behavior of the system.

Legaard, Gomes, Foldager and Larsen

When discrepancies exceed a tolerance value, a new calibration is started, that tries to find new parameters
for the model that explain the measured data (recall Figure 6b).

Our tracking simulator was prototyped in Python and exposed as an FMU through PyFMU. To produce the
simulation results, the tracking simulator uses the model in Equations (1) to (9) and the Python numerical
library SciPy (Eric Jones and Travis Oliphant and Pearu Peterson and others 2001). The actual data comes
as inputs to the PyFMU, and the recalibration process is implemented using the SciPy library.

To validate the tracking simulator, we used a co-simulation with the FMU produced from the actual model of
the Robotti, created in 20-sim. To more easily trigger the recalibration process, we change the Cα f parameter
of the actual Robotti FMU during the co-simulation. These results are explained in Figure 10.

40 30 20 10 0 10
X [m]

0

5

10

15

20

25

30

35

40

Y
 [

m
]

Global Position

reference
tracking
cal 1
cal 2
cal 3
cal 4
cal 5
cal 6
cal 7
cal 8

nce
g

Figure 9: Global position of the robot. The orange line represents the simulation while the blue line repre-
sents the values of the actual Robotti FMU. Until the first bend, the simulation matches the actual Robotti
FMU. On the second bend, however, there is divergence. This triggers the first re-calibration. The dashed
line represents the interval of actual data used to find a new Cα f parameter. Interleaved by a brief cool-down
period, there are two subsequent re-calibrations, as the error is still above the tolerance.

Detecting the local surface characteristics during operation is a problem involving the surface (e.g., soil type
and water content), the tires, and the vehicle dynamical system prescribing the traction and maneuverability.
The soil-tire interaction is typically modeled using classical terramechanics models (Wong et al. 1984)
which is a semi-empirical model that is often used as a basis for modeling off-road applications. In this
work, we use a bike model to track the motion of a more complex vehicle model in an FMU.

The design of a tracking simulator requires advanced domain knowledge and a careful choice of the pa-
rameters used in the recalibration process. The recalibration process problem is no different than a model
identification problem. What makes the design of a tracking simulator unique is that each recalibration pro-
cess is a slightly different model identification problem. For instance, the first re-calibration may succeed,
while the second one may not. Developing a tracking simulator that works every time is outside the scope
of this paper and the subject of ongoing work.

These challenges are better understood by prototyping and experimentation activities, which are enabled by
tools such as PyFMU. This has allowed us to grasp some of the trade-offs between the different parameters
that go into the design of a tracking simulator. For instance, a larger re-calibration interval is not always
better, as it may lead to diverging optimization.

Legaard, Gomes, Foldager and Larsen

0 20 40 60
time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ra
d

Steering

0 20 40 60
time [s]

450

500

550

600

650

700

750

800

Tyre Cornering Stiff.
Caf

Caf

0 20 40 60
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(t)

Error
error
tolerance

Figure 10: Steering angle, tyre stiffness and error of reference and adaptive model.

5 RELATED WORK

We restrict our scope to approaches to the implementation of FMUs for co-simulation. We therefore exclude
other co-simulation interfaces (e.g., HLA (IEEE 2014)). Additionally, we consider only general approaches
that are not restricted to modelling a specific domain such as fluid dynamics or power systems. To the authors
knowledge no survey exists that provides a comprehensive comparison of tools capable of producing FMUs.
Rather than attempt this, several works are presented highlighting the two main approaches which are used
for exporting FMUs.

The first approach of generating FMUs is using a compiled language such as C/C++. Aslan et al. (2015)
describes an object-oriented framework for the implementation of FMUs for co-simulation. New FMUs
are developed by providing C++ code that extends a given base class. There is the possibility that a user
specifies the model equations in C++, and the code provides some standard solvers to solve it. FMI (2015)
proposes a similar object-oriented framework but supports only FMI1. The strength of this approach is the
efficiency of the model and portability once compiled for a given platform.

The alternative to compiling FMUs is the approach used by PyFMU referred to as “tool-coupling” by Widl
and Müller (2017). Thule et al. (2018) uses this approach for interfacing with models written in the language
VDM-RT (Verhoef et al. 2006). Gomes et al. (2018) describes a method and a tool for the modification of
existing FMUs, by wrapping them into new FMUs, according to the needs of specialized master algorithms.
The new FMUs need to be recompiled, and may modify the inputs provided (e.g., implementing different
input approximation functions), the outputs requested, or the way time stepping is performed.

More related to the tool is PythonFMU (https://github.com/NTNU-IHB/PythonFMU) which we originally
planned to use. However, at the time we encountered issues with the generated model description files. This,
among other limitations, spawned the work on PyFMU as a separate project. The authors of PythonFMU
has since fixed several of these issues.

6 CONCLUDING REMARKS

Being able to rapidly prototype and simulate different designs in the early design stages of CPSs is extremely
valuable, especially in the context of self-adaptive system development. The PyFMU tool makes it possible
to implement FMUs with ease, using the popular Python programming language and its extensive set of
numerical libraries.

Legaard, Gomes, Foldager and Larsen

The tracking simulator implemented in the case study demonstrates the advantages of this approach; as it
would have been very time consuming to implement and refine the optimization algorithm using an existing
approach. This is because the convergence of the recalibration process of a tracking simulator depends on
when it started, which portion of the real trajectory is taken into account, and on several other parameters
of the optimization engine. Having a prototype enables developers to more easily understand the different
parameters involved and ultimately fine-tune the system. For instance, this prototype allowed us to conclude
that a larger re-calibration interval is not always better, as it may fail to converge.

Another important perspective is that the content of the PyFMU is pure Python code. This means it can be
developed, tested, and debugged, independently of the FMU where it resides. The ability to verify changes
to the models quickly using a debugger was a big advantage to us.

Our tool opens the possibility of co-simulation to the many people who know Python but do not have
sufficient knowledge of FMI or C to implement one from scratch. The tool currently supports the core
functionality of FMI, however, some optional features such as providing the derivatives of the FMU and
declaring physical units are subject of ongoing work. An continuously updated list of supported features
and capabilities can be found on the front page of the code repository.

REFERENCES

2015. “FMI++”. https://sourceforge.net/projects/fmipp/.

Aslan, M., U. Durak, and K. Taylan. 2015, July. “MOKA: An Object-Oriented Framework for FMI Co-
Simulation”. In Conference on Summer Computer Simulation, pp. 1–8. Chicago, Illinois, Society for
Computer Simulation International San Diego, CA, USA.

Blochwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns,
J. Mauss, D. Neumerkel, H. Olsson, and A. Viel. 2012, November. “Functional Mockup Interface 2.0:
The Standard for Tool Independent Exchange of Simulation Models”. In 9th International Modelica
Conference, pp. 173–184. Munich, Germany, Linköping University Electronic Press.

Broenink, J. F. 1997. “Modelling, Simulation and Analysis with 20-Sim”. Journal A Special Issue
CACSD vol. 38 (3), pp. 22–25.

FMI v. 2.0 2014. “Functional Mock-up Interface for Model Exchange and Co-Simulation”.

Foldager, F., O. Balling, C. Gamble, P. G. Larsen, M. Boel, and O. Green. 2018, July. “Design Space Explo-
ration in the Development of Agricultural Robots”. In AgEng conference. Wageningen, The Netherlands.

Gomes, C., B. Meyers, J. Denil, C. Thule, K. Lausdahl, H. Vangheluwe, and P. De Meulenaere. 2018.
“Semantic Adaptation for FMI Co-Simulation with Hierarchical Simulators”. SIMULATION vol. 95
(3), pp. 1–29.

Gomes, C., C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. 2018. “Co-Simulation: A Survey”.
ACM Computing Surveys vol. 51 (3), pp. Article 49.

IEEE 2014. “IEEE 1516 High Level Architecture.”.

Eric Jones and Travis Oliphant and Pearu Peterson and others 2001. “SciPy: Open source scientific tools for
Python”. [Online; accessed 31 March 2020].

Kleijn, C. 2009. 20-Sim 4.1 Reference Manual. Getting Started with 20-sim.

Kong, J., M. Pfeiffer, G. Schildbach, and F. Borrelli. 2015, June. “Kinematic and Dynamic Vehicle Models
for Autonomous Driving Control Design”. In 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1094–
1099. Seoul, South Korea, IEEE.

Legaard, Gomes, Foldager and Larsen

Kritzinger, W., M. Karner, G. Traar, J. Henjes, and W. Sihn. 2018. “Digital Twin in Manufacturing: A
Categorical Literature Review and Classification”. IFAC-PapersOnLine vol. 51 (11), pp. 1016–1022.

Kübler, R., and W. Schiehlen. 2000. “Two Methods of Simulator Coupling”. Mathematical and Computer
Modelling of Dynamical Systems vol. 6 (2), pp. 93–113.

Lee, E. A. 2008. “Cyber Physical Systems: Design Challenges”. In 11th IEEE International Symposium on
Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369.

Rajamani, R. 2011. Vehicle Dynamics and Control. Springer Science & Business Media.

Thule, C., K. Lausdahl, and P. G. Larsen. 2018, July. “Overture FMU: Export VDM-RT Models as Tool-
Wrapper FMUs”. In The 16th Overture Workshop, edited by K. Pierce and M. Verhoef, pp. 23–38.
Oxford, Newcastle University, School of Computing. TR-1524.

Verhoef, M., P. G. Larsen, and J. Hooman. 2006. “Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++”. In FM 2006: Formal Methods, edited by J. Misra, T. Nipkow, and
E. Sekerinski, Lecture Notes in Computer Science 4085, pp. 147–162, Springer-Verlag.

Weyns, D. 2019. “Software Engineering of Self-Adaptive Systems”. In Handbook of Software Engineering,
edited by S. Cha, R. N. Taylor, and K. Kang, pp. 399–443. Cham, Springer International Publishing.

Widl, E., and W. Müller. 2017, July. “Generic FMI-Compliant Simulation Tool Coupling”. In The 12th
International Modelica Conference, Prague, Czech Republic, May 15-17, 2017, pp. 321–327.

Wong, J. Y., M. Garber, and J. Preston-Thomas. 1984. “Theoretical Prediction and Experimental Substanti-
ation of the Ground Pressure Distribution and Tractive Performance of Tracked Vehicles”. Proceedings
of the Institution of Mechanical Engineers, Part D: Transport Engineering vol. 198 (4), pp. 265–285.

Zhou, P., D. Zuo, K. Hou, Z. Zhang, J. Dong, J. Li, and H. Zhou. 2019, February. “A Comprehensive
Technological Survey on the Dependable Self-Management CPS: From Self-Adaptive Architecture to
Self-Management Strategies”. Sensors vol. 19 (5), pp. 1033.

ACKNOWLEDGEMENTS

We are grateful to the Poul Due Jensen Foundation, which has supported the establishment of a new Centre
for Digital Twin Technology at Aarhus University, which will take forward the principles, tools and applica-
tions of the engineering of digital twins. We also acknowledge EU for funding the INTO-CPS project (grant
agreement number 644047) which was the original source of funding for the INTO-CPS co-simulation and
the initial modeling of Robotti. Finally, we thank Daniella Tola for proofreading drafts of this manuscript.

AUTHOR BIOGRAPHIES

CHRISTIAN MØLDRUP LEGAARD is a PhD student at the Department of Engineering at Aarhus Uni-
versity. His research is centered on a combination of co-simulation and machine learning. His email address
is cml@eng.au.dk.

CLÁUDIO GOMES is a Post-Doc at the Department of Engineering at Aarhus University. His research is
centered on co-simulation and digital twins. His email address is claudio.gomes@eng.au.dk.

FREDERIK FORCHHAMMER FOLDAGER is an industrial PhD student at the Department of Engi-
neering at Aarhus University and he is employed at Agrointelli. His research is centered on modeling of
soil–machine interaction. His email address is ffo@agrointelli.com.

PETER GORM LARSEN is a Full Professor at the Department of Engineering at Aarhus University. His
research is centered on digital twins, co-simulation and tool building. His email address is pgl@eng.au.dk.

Chapter 9

Neuromancer Framework

NeuroMANCER: Neural Modules with Adaptive Nonlinear Constraints and
Efficient Regularizations.

• Extended the codebase to handle arbitrary Numpy [54] operators, based
on lazily evaluated computation graph.

• Improve packaging and distribution of the library

167

Chapter 10

Portable runtime environments
for Python-based FMUs:
Adding Docker support to
UniFMU

The paper presented in this chapter has been published in the peer-reviewed
conference International Modelica Conference.

168

Portable runtime environments for Python-based FMUs:
Adding Docker support to UniFMU

Thomas Schranz1 Christian Møldrup Legaard2 Daniella Tola2 Gerald Schweiger1

1Graz University of Technology, Austria, {thomas.schranz,gerald.schweiger}@tugraz.at
2DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, {cml,dt}@ece.au.dk

Abstract

Co-simulation is a means to combine and leverage the
strengths of different modeling tools, environments and
formalisms and has been applied successfully in various
domains. The Functional Mock-Up Interface (FMI) is
the most commonly used standard for co-simulation. In
this paper we extend UniFMU, a tool that allows users
to build Functional Mock-Up Units (FMUs) in virtually
any programming language, to support execution within
Docker. As a result the generated FMUs can be distributed
in an environment containing all runtime dependencies.
To describe the process of creating Dockerized FMUs us-
ing UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs.

Keywords: FMI, Co-Sim, Python, Tool-Coupling, Docker

1 Introduction

Complex, heterogeneous systems can be found through-
out all fields of science and industry. Due to increasing
complexity, market competition and specialization, sys-
tem evaluation and simulation-based analysis has become
more and more difficult (G. Schweiger et al. 2019). How-
ever, there often exist partial models for different parts of
these systems, albeit in different domains and developed
using different tools (Gomes et al. 2018). Co-simulation
is a means to combine and leverage the strengths of dif-
ferent modeling tools, environments and formalisms (Cre-
mona et al. 2019) and has been applied successfully in
various domains (Gerald Schweiger et al. 2018; Pedersen
et al. 2017; Nageler et al. 2018). The Functional Mock-
Up Interface (FMI) was found to be the most promising
standard for continuous time, discrete event, and hybrid
co-simulation in a survey by (G. Schweiger et al. 2019).
FMI is maintained by the Modelica association (Model-
ica Association 2021); it can be used to co-simulate com-
ponents packaged as Functional Mock-Up Units (FMUs),
each of which can be built using a different FMI-enabled
modeling tool.

1.1 Co-Simulation Tools

With Open Modelica (Asghar and Tariq 2010), Simulink1

or 20-sim2 users can generate FMUs based on com-
mon modeling languages such as Modelica or MAT-
LAB/Simulink using a graphical interface. The Universal
Functional Mock-up Unit (UniFMU) (Legaard et al. 2021)
tool allows users to build FMUs from arbitrary code in any
programming language; it supports Python, C# and Java
out-of-the-box. It uses a precompiled binary wrapper that
implements the methods specified in the FMI standard’s
C-headers to spawn a process that executes the FMU’s
actual code. This way the FMU can be built from code
written in an interpreted language or a language that uses
automatic garbage collection. However, this setup, allow-
ing for this kind of flexibility, requires the host machine to
provide the process with all runtime dependencies which
limits portability, especially between different host ma-
chines, and potentially necessitates a complicated setup
procedure.

There exists a number of distributed, FMI-based co-
simulation tools, many of which were analyzed in (Ha-
tledal et al. 2019). However, all of them require a tight
coupling between the co-simulation components and the
master algorithm. ProxyFMU, a tool developed by the au-
thors of (Hatledal et al. 2019) decouples the FMUs, in a
way that they become independent of the master algorithm
in a client/server solution that supports JavaScript, Python,
C++ and the JVM on the client side.

The authors of (Hinze et al. 2018) propose a method
for running FMUs inside Docker containers by placing
the entire FMU archive inside the container and extending
the master algorithm with a remote procedure call proto-
col. A distinction between their work and our approach is
that FMUs generated using UniFMU work with any FMI-
enabled master algorithm without the need to implement
any additional protocols.

1.2 Contributions
In this paper we extend UniFMU using the virtualization
environment Docker3, such that the FMUs can be shipped
with all runtime dependencies. We provide a general

1http://www.mathworks.com/products/simulink
2http://www.20sim.com
3https://www.docker.com

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

419

mechanism that can be leveraged for all languages sup-
ported by the tool. The resulting FMUs have nearly the
same portability as compiled FMUs (except for the depen-
dency on Docker) and require no language-specific setup
procedure, but still allow the use of non-compiled lan-
guages and languages that use automatic garbage collec-
tion. To explain the process of creating Dockerized FMUs
using UniFMU, we show how to model and co-simulate
a robotic arm and a controller using two Python-based
FMUs. The UniFMU tool (with the extensions for Dock-
erization) is available on Github4. The FMUs described in
this paper can be found in a separate repository5.

The rest of the paper is structured as follows. First, sec-
tion 2 introduces a robotic arm and a controller which is
used as a case study throughout the paper. Next, section 3
provides an introduction to UniFMU and describe how the
robotic arm and controller can be implemented as FMUs
using the tool. Then, section 4 describes the extension
of UniFMU that allows FMUs and their dependencies to
be deployed inside Docker containers. Afterwards, sec-
tion 6 provides a discussion of the results and outlines fu-
ture work on the tool. Finally, section 7 provides conclud-
ing remarks.

2 Case Study
To exemplify the process of using UniFMU we consider
the case of modeling a robotic arm coupled to a controller
as depicted in Figure 1. The example is chosen to high-
light how different modeling formalisms can be realized
by the tool. Specifically, the robotic arm described in
subsection 2.1 is inherently continuous, whereas the con-
troller described in subsection 2.2 is discrete.

RobotController

Figure 1. Connection between controller and robot model.

2.1 Robotic Arm
The robotic arm is modeled as a controlled inverted pen-
dulum. The states of the system are its angle θ , the an-
gular velocity ω and the current running through the coils
of the electrical motor i. The dynamics of the robotic arm
are described by Equation 1. Note that contrary to the vi-
sualization shown in Figure 7 the model only considers a
single joint that rotates around a single axis.

f (x) =


θ̇

ω̇

i̇

=


ω

K·i−b·ω−m·g·l·cos(θ)
J

u·Vabs−R·i−K·ω
L

 (1)

4https://github.com/INTO-CPS-Association/
unifmu

5https://github.com/Daniella1/robot_unifmu

where:
The derivative of the angle θ̇ is, per definition, equal

to the velocity of the arm ω . The derivative of the an-
gular velocity ω̇ is determined by the torque coefficient
K = 7.45 s−2A−1, the current i, the motor-shaft fric-
tion b = 5.0 kg · m2 · s−1 and the gravity acting on the
arm, denoted by m · g · l · cos(θ), with m = 5.0 kg, g =
9.81ms−2, l = 1.0 m. The change in current is determined
by the input from the controller u, the voltage across the
coils Vabs = 12.0 V , the resistance R = 0.15 Ω and the mo-
tor’s inductance L = 0.036 H.

2.2 Controller
A proportional-integral-derivative (PID) con-
troller (Åström and Murray 2010) is used to generate the
control signals sent to the robotic arm. The continuous
formalization of the controller is given by:

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd ė(t) (2)

where e(t) is a measure of the error of the variable being
controlled and Kp, Ki and Kd are coefficients used to tune
how the proportional and derivative terms are weighted.
In case of the robot, the controller is trying to minimize
the error between the desired angle θ ∗(t) and the true an-
gle θ(t). Thus, the error is defined as e(t) = θ ∗(t)−θ(t).

In practice, most controllers are implemented digitally,
which means that derivatives and integrals must be re-
placed by discrete approximations. There are several ways
to do this, the simplest being to replace derivatives by first-
order differences

ė(tk)≈ ėk =
ek − ek−1

T
,

and integrals by sums∫ tk

0
e(tk)≈ Ek =

N

∑
n=1

ekn ·T

where ek = e(tk), T is the sampling time and N = tk/T
is the number of samples between time 0 and tk. After re-
placing the continuous definitions in Equation 2 we obtain
an equation that can be implemented on a discrete con-
troller

uk = Kpek +KiEk +Kd ėk (3)

This discretization scheme is simple to implement

3 Modeling
In this section, we describe how UniFMU is installed and
how it is used to generate an FMU. We provide a brief
overview of the resulting FMU’s structure and method of
operation. Subsequently, we describe the FMUs used to
model the robotic arm and the controller. For illustrative
purposes both FMUs are implemented in Python, however
in the general case they can be implemented in a mix of
languages.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

420 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

3.1 Creating an FMU using UniFMU

UniFMU is a command line interface (CLI) that can be
installed through Python’s package installer pip or from
source following the instructions in the official repository.
Installation through pip uses a single command:

pip install unifmu

It should be noted that the FMUs generated with
UniFMU do not require Python during runtime, unless the
FMUs themselves are implemented in Python. To gen-
erate an FMU the tool has to be invoked with the sub-
command generate, and supplied with the language the
FMU is implemented in and the name it should have; for a
Python-based FMU with the name robot this looks like:

unifmu generate python robot

This generates an FMU with the structure shown in Fig-
ure 2. The binaries directory contains a precompiled
wrapper for Windows, Linux and MacOS that implements
the methods specified in the FMI’s C-headers and relays
them to the actual implementation of the FMU found in
the resources directory. model.py defines a class
that declares a set of methods that correspond to the meth-
ods in the FMI standard, such as FMI’s fmi2DoStep
which is implemented by the Python method do_step.
The actual overwrite used to model the robotic arm can be
seen in Listing 1.

robot.fmu

binaries

darwin64

linux64

unifmu.so

win64

resources

model.py

modelDescription.xml

Figure 2. The directory structure for a Python FMU. Note that
several files generated by the tool are omitted for simplicity.

3.2 Robotic Arm FMU

The robotic arm FMU is implemented in Python using a
numerical solver provided by the SciPy (Virtanen et al.
2020) package. The general procedure for solving an ODE
using Scipy is to define a function which evaluates the
derivative for a given combination of state and time. Using
Equation 1 as a reference the function f (·) can be defined
as shown in Listing 1.

Figure 3. Standalone test of robotic arm, with values θ0 = ω0 =
i0 = u(t) = 0.

1 def do_step(
self,current_time,step_size,no_step_prior
):

2 def f(t, y):
3 theta, omega, i = y
4 tau=self.k1*np.cos(theta)
5 domega=(self.K*i-self.b*omega-tau)/

self.J
6 di=(self.V-self.R*i-self.K*omega)/

self.L
7 dtheta=omega
8 return dtheta, domega, di
9 res=solve_ivp(f,(

current_time,current_time+step_size),y0)
10 self.theta,self.omega,self.i=res.y[:,-1]
11 return Fmi2Status.ok

Listing 1. Implementation of the fmi2DoStep method for the
robotic arm FMU.

Given the definition of the derivative, the solve_ivp
function can be used to obtain the solution for the next step
of the FMU and allows users to choose between solvers.
However, it is also possible to use any other Python li-
brary providing numerical solvers or to implement a cus-
tom solver. This is a very flexible solution as it allows
users to choose the type of solver that is suitable for the
particular ODE. After solving the ODE, the newly esti-
mated state is assigned to the instance, where it can be
accessed from other methods and the FMI.

To test the dynamics of the robotic arm FMU, a small
test program is written in Python which invokes the
do_step several times. The results are shown in Figure 3
for initial state and input θ0 = ω0 = i0 = u(t) = 0. We see
that the angle of the robot decreases from 0 to -1 over 10
seconds.

3.3 Controller FMU
The controller-FMU implements a simple control algo-
rithm that determines the signal sent to the motor based on
the difference between the desired and the actual current
angle. Similarly to how Equation 1 was translated into a

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

421

Python function describing the derivative of the state, we
use the control policy Equation 3 as a reference to imple-
ment the expression shown in Listing 2.

1 def do_step(self, current_time, step_size,
no_step_prior):

2 err=self.setpoint_t-self.measured_t
3 self.I=self.I+err*step_size
4 D=(err-self.p_err)/step_size
5 self.u=self.Kp*err+self.Ki*self.I+self.Kd

*D
6 self.p_err = err
7 return Fmi2Status.ok

Listing 2. Implementation of the fmi2DoStep method for the
controller-FMU.

In most practical situations, controllers are imple-
mented on a processing unit where updates to the out-
put would happen at a fixed update rate determined by the
controller’s clock frequency and the number of operations
needed at each update.

An implicit assumption of our model is that the step-
size used by the solver matches the update rate of the
controller. For small step sizes, the discrete approxima-
tion implemented by the model remains relatively accu-
rate. However, for larger step sizes the accuracy of the
discretization scheme is reduced, which may ultimately
cause the closed-loop system to become unstable. A
solution to mitigate the discretization error is to use a
more sophisticated discretization scheme, such as Tustin’s
method (Franklin, Powell, and Emami-Naeini 2020).

As in the robotic arm FMU, we can also use any ex-
ternal library for modeling the controller. For instance, a
package such as python-control6, can be used to evaluate
the performance of different controllers.

The functionality of the controller can be verified by
writing a small test program in Python that invokes the
do_step method of the FMU. To examine the closed-loop
behavior, the robot is replaced with a simple linear model
described by the ODE θ̇ = u. Executing the Python test
program, we obtain the step-response of the closed-loop
system (with surrogate model) as depicted in Figure 4.

4 Docker Support
A key contribution of this paper is extending UniFMU so
that the generated FMUs can be executed within a virtu-
alization environment using Docker. To create a Docker-
ized FMU the user can append the –dockerize switch to
UniFMU’s generate subcommand:

unifmu generate python --dockerize robot

The functionality is available for Linux and macOS and
all languages that the tool supports. Windows support
is under development, but is held back by limitations of
Docker’s networking capabilities when running on Win-
dows.

6https://python-control.readthedocs.io/en/0.
8.3/index.html

Figure 4. Standalone test of the controller FMU with using lin-
ear model for plant θ̇ = u, step size = 0.001, setpoint = 1.0

4.1 Setting up the image
A configuration file, referred to as the Dockerfile, pro-
vides instructions to build the environment on any host
machine. An excerpt from the Dockerfile used by
the robotic arm FMU can be seen in Listing 3. The first
line declares that the image for the FMU is assembled
ontop a pre-built Python 3.8. image from the Docker
container library. The second line invokes the package
manager pip to install packages required by the model.
For simplicity, the three dots represent the dependencies
required by the Python backend to communicate with
the binary. The third line instructs Docker to copy the
container_bundle directory into the image. The
container_bundle contains all files that are needed
during runtime, such as the actual model implementation
and all user-generated files and dependencies.

1 FROM python:3.8
2 RUN pip install ... scipy

roboticstoolbox-python matplotlib
3 COPY container_bundle resources
4 ...

Listing 3. Dockerfile used to assemble the image used by FMU
instances.

4.2 Instantiating a Dockerized FMU
The process of creating an instance of a Dockerized FMU
is depicted in Figure 5. The steps are as follows: First, the
binary will ensure that the image declared in the Dock-
erfile has been built. If this is not the case, it will au-
tomatically invoke the Dockerfile to build the image.
Next, from the image a container is created. The container
has access to all dependencies listed in the Dockerfile,
such as Python packages that were installed through pip
and everything inside the container_bundle. Note
that each instance of an FMU is executed within its own
container and removed after use. This ensures that no in-
stances of an FMU share any state or influence each other
directly.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

422 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

fmi2Instantiate

invoke build of

instantiate imageUniFMU
Binary

Docker Image

robot.py SciPy

python 3.8

Container

Figure 5. Deployment of a model inside the Docker container.

Figure 6. Co-simulation of the controller and the robot with the
set point = 1. Experiments of varying the controller parameters
are shown.

5 Results

A co-simulation was configured and run using the two
FMUs with the INTO-CPS tool-chain (Larsen et al. 2016).
We used a fixed step-size solver with a step-size of 0.001
seconds, set the desired angle to 1 radian and plotted θ as
a function of time for various values of Kp,Ki and Kd . The
corresponding plot can be seen in Figure 6. Fig. 7 shows
the robotic arm at an angle of 1 radian. The controller with
Ki = 0 exhibits a substantial steady-state error, whereas the
ones with an integral term converge within 10 seconds.
Besides, it can be seen that controllers with an integral
term cause the system to overshoot the setpoint. Tweaking
the coefficients of the controller allows us to balance the
tendency to overshoot and the steady-state error, such that
they meet the requirements of the application. Methods
based on heuristics exist for tuning PID controllers, which
could be applied to tune the controller for the robotic arm.
However, we considered applying these to be beyond the
scope of this example use case.

Figure 7. A visualization of the robot during the co-simulation.
The measured θ is equal to the set point = 1 rad, when con-
trolled with the PID-controller.

6 Discussion
A central objective of the FMI standard is to facilitate the
exchange of models generated by different tools. To do
so, FMI requires communication through a C-API, which
complicates implementing models in languages that can-
not be compiled into a C-compatible binary. UniFMU cir-
cumvents this issue by providing a generic C-binary that
handles all communication between FMI calls to the FMU
and the FMU’s actual code. Being able to use high-level
programming languages such as Python allows develop-
ers to leverage a large ecosystem of scientific libraries
and thus implement models quickly and efficiently, espe-
cially in contrast to writing everything from scratch. Con-
sider the implementation of the do_step method for the
robotic arm shown in Listing 1. The ODE is declared and
solved in eight lines of code. We believe that this has the
potential to simplify co-simulation for more modeling ap-
plications and engage more developers.

Another aspect to this approach is that the resulting
FMUs can be verified and debugged using the develop-
ment tools of the FMU’s language. For instance, it al-
lowed us to write small test programs for verifying the
FMUs before performing the co-simulation of the system.
In our experience, the ability to effectively test the individ-
ual models greatly reduces the number of issues encoun-
tered when integrating the models.

Using FMUs that require runtime dependencies to be
handled manually is counter-intuitive to the idea of sim-
ple, standardized model exchange. Consequently, in this
work we addressed this issue by providing a way to auto-
matically virtualize the runtime environment with all de-
pendencies inside a Docker container rather than requir-
ing the host machine to provide a suitable environment.
The way this Dockerization was implemented did not af-
fect UniFMU’s precompiled binaries and all changes to
the language-specific backends are simply additional con-

Session 5B: Open standards (2) FMI/DCP

DOI
10.3384/ecp21181419

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

423

figuration options instead of hard dependencies on Docker
itself. The latter might be reused in the future to imple-
ment remote deployment.

7 Conclusion
Co-simulation is a key research interest. The FMI stan-
dard is among the most popular interfaces for model ex-
change and co-simulation. There are various tools to gen-
erate FMI-compliant FMUs. UniFMU is one such tool
that allows users to build FMUs from arbitrary code writ-
ten in any language. We used UniFMU to generate two
Python-based FMUs in order to co-simulate a robotic arm
and a controller. However, the resulting FMUs required
the host machine to provide a Python runtime environ-
ment with all dependencies preinstalled, effectively lim-
iting portability and ease of deployment. To address this
issue we extended UniFMU using the virtualization tool
Docker. With our extension, UniFMU is able to gener-
ate FMUs shipped with a Dockerfile that automati-
cally builds a runtime environment inside a container. This
way the FMUs are almost as portable as compiled FMUs
(except for the dependency on Docker) but still support
the use of non-compiled languages. Our extension is not
limited to Python but can be reused for other languages
as well. Besides, the changes we implemented can help
in developing a configuration for remote deployment of
FMUs in the future.

Acknowledgements
The authors would like to thank Thomas Schwengler for
their support with designing the Docker-integration.

The reported research was conducted within the
project NextHyb2 (881150) and project DigitalEner-
gyTwin (873599), which received funding in the frame-
work of ”Stadt der Zukunft” and "Energieforschung", a
research and technology program of the Austrian Ministry
for Transport, Innovation and Technology (BMVIT).

References
Asghar, Syed Adeel and Sonia Tariq (2010). Design and Imple-

mentation of a User Friendly OpenModelica Graphical Con-
nection Editor. eng.

Åström, Karl Johan and Richard M Murray (2010). Feedback
Systems: An Introduction for Scientists and Engineers. In En-
glish. ISBN: 978-1-4008-2873-9.

Cremona, Fabio et al. (2019-06). “Hybrid Co-Simulation: It’s
about Time”. en. In: Software & Systems Modeling 18.3,
pp. 1655–1679. ISSN: 1619-1366, 1619-1374. DOI: 10.1007/
s10270-017-0633-6.

Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini
(2020). Feedback Control of Dynamic Systems. eng. Eighth
edition, global edition. Harlow, United Kingdom: Pearson
Education Limited. ISBN: 978-1-292-27452-2.

Gomes, Cláudio et al. (2018-07). “Co-Simulation: A Survey”.
en. In: ACM Computing Surveys 51.3, pp. 1–33. ISSN: 0360-
0300, 1557-7341. DOI: 10.1145/3179993.

Hatledal, Lars Ivar et al. (2019-02). “FMU-proxy: A Frame-
work for Distributed Access to Functional Mock-up Units”.
In: pp. 79–86. DOI: 10.3384/ecp1915779. URL: https://ep.
liu.se/en/conference-article.aspx?series=ecp&issue=157&
Article_No=8 (visited on 2021-05-09).

Hinze, Christoph et al. (2018). “Towards Real-Time Capable
Simulations with a Containerized Simulation Environment”.
In: 2018 25th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), pp. 1–6. DOI: 10.1109/
M2VIP.2018.8600827.

Larsen, Peter Gorm et al. (2016). “Integrated tool chain for
model-based design of Cyber-Physical Systems: The INTO-
CPS project”. In: 2016 2nd International Workshop on Mod-
elling, Analysis, and Control of Complex CPS (CPS Data),
pp. 1–6. DOI: 10.1109/CPSData.2016.7496424.

Legaard, Christian Møldrup et al. (2021). “A Universal Mech-
anism for Implementing Functional Mock-up Units”. In:
11th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications. SIMUL-
TECH 2021. Virtual Event, to appear.

Modelica Association (2021). Functional Mock-up Interface for
Model Exchange and Co-Simulation. https : / / www . fmi -
standard.org/downloads.

Nageler, P. et al. (2018-08). “Novel method to simulate large-
scale thermal city models”. en. In: Energy 157, pp. 633–
646. ISSN: 03605442. DOI: 10 . 1016 / j . energy . 2018 . 05 .
190. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S0360544218310363 (visited on 2021-05-06).

Pedersen, Nicolai et al. (2017). “Distributed Co-Simulation of
Embedded Control Software with Exhaust Gas Recircula-
tion Water Handling System using INTO-CPS:” in: Pro-
ceedings of the 7th International Conference on Simula-
tion and Modeling Methodologies, Technologies and Appli-
cations. Madrid, Spain: SCITEPRESS - Science and Technol-
ogy Publications, pp. 73–82. ISBN: 9789897582653. DOI: 10.
5220/0006412700730082. URL: http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0006412700730082
(visited on 2021-05-06).

Schweiger, G. et al. (2019-09). “An empirical survey on co-
simulation: Promising standards, challenges and research
needs”. en. In: Simulation Modelling Practice and Theory 95,
pp. 148–163. ISSN: 1569190X. DOI: 10.1016/j.simpat.2019.
05.001. URL: https: / / linkinghub.elsevier.com/retrieve/pii /
S1569190X1930053X (visited on 2021-05-06).

Schweiger, Gerald et al. (2018-12). “District energy systems:
Modelling paradigms and general-purpose tools”. en. In: En-
ergy 164, pp. 1326–1340. ISSN: 03605442. DOI: 10.1016/j.
energy.2018.08.193. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0360544218317274 (visited on 2021-05-06).

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python”. In: Nature Meth-
ods 17, pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU

424 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181419

Chapter 11

Coupling physical and machine
learning models: case study of
a single-family house

The paper presented in this chapter has been published in the peer-reviewed
conference International Modelica Conference.

175

Coupling physical and machine learning models: case study of a
single-family house

Basak Falay1 Sandra Wilfling2 Qamar Alfalouji2 Johannes Exenberger2 Thomas Schranz2

Christian Møldrup Legaard3 Ingo Leusbrock1 Gerald Schweiger2

1AEE-Institue for Sustainable Technologies, Austria b.falay@aee.at
2Institute of Software Technology, Technical University of Graz, Austria gerald.schweiger@tugraz.at

3DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark, cml@ece.au.dk

Abstract
The emergence of Cyber-Physical Systems poses new
challenges for traditional modelling and simulation tech-
niques. We need to combine white, grey, and black box
models as well as different tools developed for specific
subsystems and domains. Co-simulation is a promising
approach to modeling and simulating such systems. This
paper presents a case study where a physical model of a
building’s heating system implemented in Modelica is co-
simulated with a machine learning model of a stratified
hot water tank implemented in Python. The Python model
is exported as Functional Mock-up Unit using UniFMU.
Keywords: Co-Simulation, Functional Mock-Up Inter-
face, Modelling, Machine Learning

1 Introduction
Future intelligent and integrated energy systems must have
a high degree of flexibility and efficiency to ensure reli-
able and sustainable operation (Lund et al. 2017). Along
with the rapid expansion of renewable energy, this degree
of flexibility and efficiency can be achieved by overcom-
ing the clear separation between different sectors and by
increasing connectivity and the associated data availabil-
ity through the integration of sensors and edge/fog com-
puting (Vatanparvar and Faruque 2018). All of these de-
velopments drive the transition towards so-called Cyber-
Physical Energy Systems (Palensky, Widl, and Elsheikh
2013). Cyber technologies (sensors, edge/fog comput-
ing, IoT networks, etc.) can monitor the physical systems,
enable communication between different subsystems, and
control them. Thus, the emergence of Cyber-Physical Sys-
tems poses new challenges for traditional modelling and
simulation approaches.

One of these challenges is that models need to com-
bine computational systems and data communication net-
works with physical systems. Furthermore, recent studies
showed that pure white-box models based on first princi-
ples deal with drawbacks such as time-consuming devel-
opment, validation problems or low computational speed
(Li and Wen 2014). Consequently, these approaches have
limited use for complex systems such as intelligent build-
ings outside of academia (Schweiger, Nilsson, et al. 2020).

Black-box approaches examine the system from the out-
side using input/output relations. Depending on the ap-
proach, they are computationally efficient but compared
to white-box approaches they lack in generalizability and
extensibility (Thieblemont et al. 2017). Beside white-box
and black-box models, grey-box models fall in between
(Harish and Kumar 2016). Several papers highlighted
the importance of combining white-, grey-, and black-
box models for analyzing and optimizing Cyber-Physical
Systems (O’Dwyer et al. 2019; Killian and Kozek 2016;
Thilker, Madsen, and Jørgensen 2021).

There are two options to simulate the interactions be-
tween subsystems; (i) the entire system can be modelled
and simulated with a single tool referred to as monolithic,
(ii) already established models for the respective subsys-
tems are coupled in co-simulation (Gomes et al. 2018).
A recent survey discussed the advantages, disadvantages,
and challenges of co-simulation approaches (Schweiger,
Engel, et al. 2018). This survey showed that experts con-
sider the Functional Mock-Up Interface (FMI) standard
to be the most promising standard for continuous-time,
discrete-event, and hybrid co-simulation.

In this paper, the physical parameters of a subsystem
(stratified storage tank) are not available. In this situation,
model calibration and parameter estimation approaches
can be used depending on availability of the measurement
data. On the other hand, machine learning models can
be as well used to mimic the behavior of the system by
construct relationships between input and outputs without
being dependent on the components parameters. Artificial
Neural Networks was used to model the stratified storage
tank in (Géczy-Vig and Farkas 2010). In this work, Ran-
dom Forest (RF) was used to model the temperatures in
each layer of the stratified storage tank. Since the states of
the other components influence the state of the stratified
storage, we have created a co-simulation workflow where
the machine learning and physical models can be cou-
pled. Physical and machine learning models are available
at https://github.com/tug-cps/NextHyb2 . Un-
fortunately, we cannot publish the data due to data privacy
policy. Therefore, we have additionally generated a syn-
thetic, open-source data set.

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

335

2 Method
2.1 Heating System of Single-family House
A single-family house with 180m2 floor area, located in
Austria with an annual energy consumption of 7500 kWh
was analyzed in this work. Figure 1 gives an overview of
the main components of the single-family house heating
system. The house, equipped with a floor heating system,
has three different heat sources: (i) a solar collector with
46m2 flat plate area, (ii) a stove which directly heats the
house, and the excess heat feeds the storage tank and (iii)
an air-to-water heat pump. Additionally, an estimated 3m3

storage tank bridges these three heat sources in order to in-
crease the efficiency of the heating system. The house has
an indoor pool (24m3), which is heated by the hot water
storage tank or directly by the solar collector.

Figure 1. Overview of the single-family house heating system.
Red line represents the supply and blue line represents the return
temperatures.

The following rule-based control strategy of the heating
system is given below.

• The priority of the solar collector is to maintain the
temperature of top layer of the storage tank at 52◦. If
this condition is satisfied, then the excess heat from
the solar collectors heats the indoor pool to 35◦.

• If the solar collector cannot meet the heating demand
of the indoor pool and if the top layer temperature of
storage tank is higher than 52◦, the storage tank heats
the pool.

• If these conditions don’t satisfy or the temperature of
the bottom layer of the storage tank drops below 35◦,
the heat pump turns on.

• If the temperature of the stove is higher than 40◦, the
excess heat is fed into the storage tank.

2.2 Measurement Data
In Appendix, Figure A.1 shows an overview of the heating
system components and the locations of the heat meters.
Temperatures are represented in (Tcomponent , mass flow
rate in dmcomponent . Four temperature sensors from top to
bottom respectively TStorage,1,TStorage,2,TStorage,3,TStorage,4
are located at the storage tank. The measured data from

the heat meters is between 01.02.2019 and 31.01.2020,
with a temporal resolution of 1 minute. Figure 2 gives
an overview of the data quality of the measurement data.
White lines represent the missing data points and corre-
sponding periods. 4% of the measurement data is miss-
ing; 65% of them falls into the period between November
2019 and January 2020, 25% of them falls into September
2019. In addition to missing values, there are wrong mea-
surements between November 2019 and January 2020 due
to the failures in the meters.

Figure 2. Missing data periods for the given measurement data

The missing parts of the data were imputed by taking
the profile of the previous day. Figure 3 demonstrates the
imputation of missing data points for four days in a row,
given in dashed lines. The measurement data was ignored
after November 2019 due to the bad quality of data. The
whole data set was resampled to 15-minute values to avoid
the over fitting the predictions of the ML model. After
post-processing, the dataset had 27840 datapoints. The
resampled data was later used for training and testing for
the ML model.

40

50

60

Te
m

pe
ra

tu
re

 L
ev

el
s i

n
 S

to
ra

ge
 T

an
k

[°
C

] Top Raw
Middle-top Raw
Middle-bottom Raw
Bottom Raw
Top Processed
Middle-top Processed
Middle-bottom Processed
Buttom Processed

2019-02
2019-03

2019-04
2019-05

2019-06
2019-07

2019-08
2019-09

0

500

1000

Vo
lu

m
e

flo
w

 [l
/h

r] Volume flow rate Processed
Volume flow rate Raw

Figure 3. Imputation of the missing data

One of the most critical features in the dataset is mass
flow rates from each component. Figure 4 shows the spar-
sity of the mass flow rates from each components. The
y-axis represent the total data points (27840) after pre-
processing, the x-axis represents the mass flow values of
the components. The black points in the figure show the
values that are not zero and the gaps between the black
points represent the zero values. Mass flow rate in the
stove has the highest percentage 99.8% of zero values and

Coupling physical and machine learning models: case study of a single-family house

336 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

the mass flow rate in the CollectortoPool has the lowest
percentage with 86%.

CollectortoStorageCollectortoPool Stove HP FloorHeating StoragetoPool
0

5000

10000

15000

20000

25000

D
at

ap
oi

nt
s

Figure 4. Visualization of data sparsity in mass flow rates of
each component

2.3 Physical Models
The physical models were implemented in the Modelica
language (Fritzson and Engelson 1998). Model-
ica is an open source, a-causal, object-oriented and
multi-domain modelling language. A discussion of
limitations and promising approaches of the Modelica
language can be found (Schweiger, Nilsson, et al.
2020). All the models used in this system are based
on the Modelica IBPSA Project 1 library (Wetter,
Treeck, et al. 2019) and the Buildings Library (Wet-
ter, Zuo, et al. 2014). Dymola was used to simulate
Modelica models (Brück et al. 2002). The following
sub - implemented in Modelica are: Solar system
(Buildings.Fluid.SolarCollectors.EN12975),
heat pump (Buildings.Fluid.HeatPumps.
CarnotTCon) and the indoor pool
(Modelica.Fluid.Vessels.ClosedVolume). The
energy demand of the house and the heat supply profile of
the stove were taken from the measurement data instead
of modelling these components. Since there was no
weather profile acquired within the given data period,
Typical Meteorological Year 3 (TMY3) for Austria were
generated from Meteonorm.

2.4 Machine Learning Model
There was no available information of the system param-
eters of the storage tank such as the insulation material
and the thickness, the wall thickness, the height or the lo-
cations of the temperature sensors. Therefore, the stor-
age tank was modelled based on RF. RF is a combination
of tree predictors which splits nodes based on a best split
of random subsets of the features, thus reducing the vari-
ance of the tree model and increasing the overall predictive
power of the model.

The RF model predicted the four temperature layers of
the storage tank. An overview of the input features for
the model is given in Figure 5. The static input features
are temperatures, Ti, and mass flow rates, dmi, from the
solar collector, heat pump, floor heating and stove. The

Static Features

TSolar,s(t), dmSolar(t), dmSolarStor(t)

Trooms,r(t), dmrooms(t)

TStove,s(t), dmStove(t)

Tpool,r(t), dmpool(t)

Random Forest
Model 4

Random Forest
Model 3

TStorage,1(t)

Random Forest
Model 2

Random Forest
Model 1

Tank Storage
ML ModelInput Features Output Features

TStorage,2(t)

TStorage,3(t)

TStorage,4(t)

THP,s(t), dmHP(t)

Dynamic Features

TStorage,4(t-1,..t-4)

TStorage,3(t-1,..t-4)

TStorage,2(t-1,..t-4)

TStorage,1(t-1,..t-4)

Pload, Tstorageroom

Figure 5. Input/Output features of the applied machine learning
model of the storage tank.

dynamic features are the four temperature layers of the
storage tank with a 1-hour look-back time with interval
15 minutes and 15 minutes prediction horizon, see Fig-
ure 6. The measured data was split randomly into training
(80%, 50 epochs) and testing (20%). The model hyper-
parameters are n_estimators = 100 which represents the
number of decision trees that achieves the best trade-off
between the accuracy and efficiency; max_depth that has
been set to an unlimited value so the nodes can expand au-
tomatically; and min_samples_split = 2. The implemen-
tation was done using the Python framework presented in
(Schranz et al. n.d.) based on Scikit-learn.

t-4 t-3 t-2 t-1 t

4 lookback time-steps

1 prediction time step

Figure 6. At time t, four look-back time-steps are used to predict
one time-step in future with each step = 15 minutes.

2.4.1 Model Performance Analysis
Two criteria were selected to evaluate the performance of
the RF model: the coefficient of variation of the Root
mean square error (CVRMSE) and mean absolute percent-
age error (MAPE) given in Equation 1 and Equation 2.

CV (RMSE) =

√
1
N ∑

N
i=1(Yi − Ŷi)2

Y
∗100 (1)

MAPE =
1
N

N

∑
i=1

(

∣∣Yi − Ŷi
∣∣

Yi
)∗100 (2)

where Y is the true value, Ŷ is predicted value, Ȳ is the
average of the true values over N test samples.

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

337

2.5 Co-Simulation
To integrate the ML model of the storage tank into the sim-
ulation environment, the ML model must be exported as
an FMU. The UniFMU tool (Legaard et al. 2021) was used
to generate a Python-based FMU. Therefore a template
of the FMU was generated using the command unifmu
generate python name.

To specify the behavior the dummy example in List-
ing 1, implemented by the generated FMU, is replaced
with the components of the ML model. A benefit of this
is that the scikit-learn code can be reused and inte-
grated into the FMU gradually. This makes sure that no
breaking changes occur. A crucial part of the FMUs im-
plementation is the fmi2DoStep method which instructs
the model to simulate forward in time for an amount of
time corresponding to the time step. For the storage-tank
FMU, this is equivalent to running one or more inference
steps of the trained model.

Listing 1. Implementation of fmi2DoStep by storage model.

from sklearn.ensemble import
RandomForestRegressor

from sklearn.datasets import
make_regression

...
def do_step(current_time,step_size,

no_step_prior):
self.temp_next=self.forrest(self.

temp_prevs)
return Fmi2Status.ok

3 Results and Discussion
3.1 Validation of the ML model
Table 1 shows the model performance on the test data set.
The ML model is imported as FMU in Dymola. Testing
of the FMU-ML model with the measurement data is per-
formed in Dymola environment, see Figure 7. TStorage,4
and TStorage,3 are the worst predicted target value accord-
ing to the CVRMSE and MAPE. The discussion of Table 1
is supported with the results of the testing.

Table 1. Performance metrics of predicting the four target tem-
perature values: TStorage,1, TStorage,2, TStorage,3 and TStorage,4 using
random forest models

CVRMSE MAPE

TStorage,1 0.0097 2.3056
TStorage,2 0.011 2.2656
TStorage,3 0.0157 4.9064
TStorage,4 0.0281 6.0215

Winter, spring and summer periods were chosen, aim-
ing to represent different boundary conditions. The only
difference in each test period was the initial values set for
the FMU-ML. These initial values of the static and dy-
namic input features were chosen from the measurement

data based on each period starting time. Since the strati-
fied hot water storage tank is a short term storage, the daily
predictions are representative. In these three figures, 9
days period for each season was chosen to show the model
prediction based on interactions of all heating supplies. In
Figure 8, Figure 9 and Figure 10, the first subplot repre-
sents the comparison between the true and the predicted
temperature values of each 4 layers of the storage tank.
The true temperature values of the top layer, middle-top
layer, middle bottom layer and the bottom layer are re-
spectively red, dark orange, blue and cyan dashed lines.
The predicted temperature values are represented the same
color code but in straight lines. In the second subplot, the
mass flow rates from different components are given. The
mass flow rates stand for when the specific component is
turned on/off.

Figure 7. Dymola layout of testing FMU-ML storage model

Figure 8 represents the frequently running components;
solar collector and pool heating for summer period. Based
on these components inputs, the ML model shows good
aggrement with the measurement data during the summer
period. One of the static input features, "PLoad", which
indicates whether at least one component in the system is
on, is introduced to capture the cooling behavior of the
storage tank. It is observed in the summer period during
the night when there is no load, the four temperature val-
ues of the storage tank decrease.

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

05/06/2019,

 00:00
06/06/2019,

 00:00
07/06/2019,

 00:00
08/06/2019,

 00:00
09/06/2019,

 00:00
10/06/2019,

 00:00 11/06/2019,

 00:00
12/06/2019,

 00:00
13/06/2019,

 00:00

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 8. Storage temperature levels predicted vs measurement
in summer period

The cold return water from the floor heating is fed into

Coupling physical and machine learning models: case study of a single-family house

338 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

the storage tank from the bottom and the middle layer.
These temperatures are expected to decrease as in the mea-
surement data. In Figure 9, between 18th and 19th March,
when the floor heating starts, the predictions of the tem-
perature of the bottom layer fails. On the 19th March,
when the heat pump is on, represented in the purple line,
the middle bottom temperature shows an increasing be-
havior. However, it cannot reach to the values of the mea-
surement data. On 20th March, only two components are
on as in the summer period. On this day, the prediction of
the temperature values can catch the measurement data.

20

30

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

14/03/2019,

 00:00
15/03/2019,

 00:00
16/03/2019,

 00:00
17/03/2019,

 00:00
18/03/2019,

 00:00
19/03/2019,

 00:00
20/03/2019,

 00:00
21/03/2019,

 00:00
22/03/2019,

 00:00

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 9. Storage temperature levels predicted vs measurement
in spring period

The winter period is selected between February and
March due to lack of winter representation from the data,
explain in Section 2.2. The bottom temperature layer of
the storage tank shows a decreasing behavior due to the
floor heating as in the measurement data. However, due
to the control strategies when the heat pump turns on, the
middle bottom temperature of the storage tank doesn’t in-
crease as in the measurement data profile.

20

30

40

50

60

Te
m

pe
ra

tu
re

 (°

C
)

True
Prediction

25/02/2019,

 00:00
26/02/2019,

 00:00
27/02/2019,

 00:00
28/02/2019,

 00:00
01/03/2019,

 00:00
02/03/2019,

 00:00
03/03/2019,

 00:00
04/03/2019,

 00:00
05/03/2019,

 00:00

Days

0.00

0.25

0.50

0.75

1.00

M
as

s f
lo

w
 ra

te

 (k
g/

s)

Collector
to Pool
from Pool
Heat pump
Floor Heating
Stove

Figure 10. Storage temperature levels predicted vs measure-
ment in winter period

From these three testing periods of the FMU-ML
model, it is observed that the temperature values of the
storage tank is predicted better when there is only col-
lector component is on. In Figure 4, data that represent
collector to storage and collector to pool is denser than
the other components data. Therefore, these static input
features can dominate the predictions more than the other
static features which are sparse. Additionally, the dynamic
features of the past predicted temperature values of the

storage tank are as well input features. Once these values
are predicted wrong, the error accumulates to the further
time steps. Results from these tests also show the the per-
formance of the TStorage,4 and TStorage,3 are worse than the
other predicted target values.

3.2 System simulation
In Appendix, Figure A.2 shows the system implementa-
tion in Dymola. All heating components explained in use-
case are framed with dashed lines in the figure. The figure
is visually simplified by hiding the source/sink component
inside of the ’StorageML_FMU’ component where the
supply or return fluid from each component is fed to stor-
age tank. All the simulations are run in a virtual Ubuntu
environment with 188 GB RAM and the Intel Xeon Sil-
ver 4215R CPU @ 3.2GHz CPUs. Dymola 2021 FD01
with Dassl solver and 10e-6 tolerance was used during this
study. The system simulation with the FMU-ML was run
10 times. The averages of the CPU times for the 32 days
simulation with 15 minutes interval is 228 seconds. The
CPU-time taken to calculate one grid interval highly de-
pends on how the ML algorithm is implemented, number
of inputs features, number of processors.

The translated model statistics are given in Table 2. The
originally described system has 1966 non-trivial DAEs,
after translation it is reduced to an ODE system with 42
continuous time states.

Table 2. Model statistics:Translated model statistics of the
single-family house with the FMU-ML storage component.

FMU-ML Model

Constants 1733
Parameters depending 654
Continuous time states 42
Time varying variables 777
Alias variables 1342
Sizes of linear system of equa-
tions

{5}

Sizes after manipulation of the
linear system of equations

{0}

Sizes of nonlinear system of equa-
tions

{6, 5, 3, 1, 1}

Sizes after manipulation of the
nonlinear system of equations

{1, 1, 1, 1, 1}

Number of numerical Jacobians 0

Figure 11 shows the results of coupling ML and phys-
ical models of the single-family house heating system.
The first subplot in Figure 11 shows the temperature lev-
els of the tank for a 32 days period. The second sub-
plot shows which component is switched on and the third
shows the load condition for the storage tank. Despite the
same real-world control strategies implemented into sys-
tem, weather profile that represents the the measurement
data is not available. The TMY3 from Meteonorm is used

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

339

20

40

60

Te
m

pe
ra

tu
re

 (°

C
) Top

Middle-top
Middle-bottom
Bottom

0

1

C
on

tro
ls

Solar to Storage
Storage to Pool
Solar to Pool
Heat pump
Room Heating
Stove

40 45 50 55 60 65 70
Time (day)

0

1

Lo
ad

 C
on

di
tio

n

Figure 11. Storage temperature levels according to the controls

for the system simulation and solar collector provides dif-
ferent outputs than the measurement data. And all outputs
based on the control strategies changes. Also the phys-
ical model parameters of the storage tank have not been
adjusted to give a good comparison. Therefore, the re-
sults from FMU-ML system simulation cannot be com-
pared with the measurement data.

Acknowledgements
The presented research is part of the project “NextHyb2”
(FFG project number 881150) financed by the Austrian
Research Promotion Agency FFG. We are grateful to
Klima Energie Fonds for sharing the data. We also would
like to acknowledge the contributions and the fruitful dis-
cussions of Carles Ribas Tugores and Walter Becke in the
context of the use case study.

References
Brück, Dag et al. (2002). “Dymola for multi-engineering model-

ing and simulation”. In: Proceedings of modelica. Vol. 2002.
Citeseer.

Fritzson, Peter and Vadim Engelson (1998). “Modelica—A uni-
fied object-oriented language for system modeling and sim-
ulation”. In: European Conference on Object-Oriented Pro-
gramming. Springer, pp. 67–90.

Géczy-Vig, P. and I. Farkas (2010). “Neural network modelling
of thermal stratification in a solar DHW storage”. In: Solar
Energy 84, pp. 801–806. ISSN: 2261-236X. DOI: 10 .1051 /
matecconf/201822501015.

Gomes, Cláudio et al. (2018). “Co-simulation: a survey”. In:
51.3. ISSN: 0360-0300. DOI: 10.1145/3179993.

Harish, VSKV and Arun Kumar (2016). “A review on modeling
and simulation of building energy systems”. In: Renewable
and sustainable energy reviews 56, pp. 1272–1292.

Killian, Michaela and Martin Kozek (2016). “Ten questions con-
cerning model predictive control for energy efficient build-
ings”. In: Building and Environment 105, pp. 403–412.

Legaard, Christian Møldrup et al. (2021). “A Universal Mech-
anism for Implementing Functional Mock-up Units”. In:
11th International Conference on Simulation and Model-
ing Methodologies, Technologies and Applications. SIMUL-
TECH 2021. Virtual Event, to appear.

Li, Xiwang and Jin Wen (2014). “Review of building energy
modeling for control and operation”. In: Renewable and Sus-
tainable Energy Reviews 37, pp. 517–537.

Lund, Henrik et al. (2017). “Smart energy and smart energy sys-
tems”. In: Energy 137.2, pp. 556–565. DOI: 10.1016/j.energy.
2017.05.123.

O’Dwyer, Edward et al. (2019). “Smart energy systems for sus-
tainable smart cities: Current developments, trends and future
directions”. In: Applied energy 237, pp. 581–597.

Palensky, Peter, Edmund Widl, and Atiyah Elsheikh (2013).
“Simulating cyber-physical energy systems: Challenges,
tools and methods”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 44.3, pp. 318–326. DOI: 10.1109/
TSMCC.2013.2265739.

Schranz, Thomas et al. (n.d.). “Energy Prediction under
Changed Demand Conditions:Robust Machine Learning
Models and Input Feature Combinations”. In: Building Simu-
lation 2021. International Building Performance Simulation
Association.

Schweiger, Gerald, Georg Engel, et al. (2018). “Co-simulation
an empirical survey: applications, recent developments and
future challenges”. In: MATHMOD 2018 Extended Abstract
Volume, pp. 125–126.

Schweiger, Gerald, Henrik Nilsson, et al. (2020). “Modeling and
simulation of large-scale systems: A systematic comparison
of modeling paradigms”. In: Applied Mathematics and Com-
putation 365, p. 124713.

Thieblemont, Hélène et al. (2017). “Predictive control strate-
gies based on weather forecast in buildings with energy stor-
age system: A review of the state-of-the art”. In: Energy and
Buildings 153, pp. 485–500.

Thilker, Christian Ankerstjerne, Henrik Madsen, and John
Bagterp Jørgensen (2021). “Advanced forecasting and distur-
bance modelling for model predictive control of smart energy
systems”. In: Applied Energy 292, p. 116889.

Vatanparvar, Korosh and Mohammad Abdullah Al Faruque
(2018). “Control-as-a-Service in Cyber-Physical Energy Sys-
tems over Fog Computing”. In: Fog Computing in the Internet
of Things: Intelligence at the Edge. Ed. by Amir M. Rahmani
et al. Cham: Springer International Publishing, pp. 123–144.
ISBN: 978-3-319-57639-8. DOI: 10.1007/978-3-319-57639-
8_7. URL: https://doi.org/10.1007/978-3-319-57639-8_7.

Wetter, Michael, C van Treeck, et al. (2019-09). “IBPSA Project
1: BIM/GIS and Modelica framework for building and com-
munity energy system design and operation – ongoing devel-
opments, lessons learned and challenges”. In: vol. 323. IOP
Publishing, p. 012114. DOI: 10 . 1088 / 1755 - 1315 / 323 / 1 /
012114. URL: https: / /doi .org/10.1088/1755- 1315/323/1/
012114.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica Build-
ings library”. In: Journal of Building Performance Simula-
tion 7.4, pp. 253–270. DOI: 10.1080/19401493.2013.765506.
URL: https://doi.org/10.1080/19401493.2013.765506.

Coupling physical and machine learning models: case study of a single-family house

340 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181335

A Appendix

Pool

Solar
Collector

Stove

TSolar,s
dmSolar

TSolar,r
dmSolar

THP,s
dmHP

THP,r
dmHP

TStove,r
dmStove

TStove,s
dmStove

Trooms,r
dmrooms

Tpool,s
dmpool

Tpool,r
dmpool

Heat
Pump

Storage Tank

TStorage,1

TStorage,3

TStorage,2

TStorage,4

Floor
Heating

Trooms,s
dmrooms

Figure A.1. Overview of the system hydraulic flow. The supply pipe is represented in red, return pipe in blue. In each pipe, the
temperature and mass flow rates are measured.

Figure A.2. Dymola layout of the single-family house heating system

Session 4B: Buildings

DOI
10.3384/ecp21181335

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

341

Chapter 12

Energy Prediction under
Changed Demand Conditions:
Robust Machine Learning
Models and Input Feature
Combinations

The paper presented in this chapter has been published in the peer-reviewed
conference of Proceedings of Building Simulation 2021: 17th Conference of
IBPSA

183

Energy Prediction under Changed Demand Conditions:

Robust Machine Learning Models and Input Feature Combinations

Thomas Schranz1, Johannes Exenberger1, Christian Møldrup Legaard2, Ján Drgoňa3,
Gerald Schweiger1

1Graz University of Technology, Graz, Austria
2Aarhus University, Aarhus, Denmark

3Pacific Northwest National Laboratory, Richland, WA, USA

Abstract

Deciding on a suitable algorithm for energy demand
prediction in a building is non-trivial and depends on
the availability of data. In this paper we compare four
machine learning models, commonly found in the lit-
erature, in terms of their generalization performance
and in terms of how using different sets of input fea-
tures affects accuracy. This is tested on a data set
where consumption patterns differ significantly be-
tween training and evaluation because of the Covid-19
pandemic. We provide a hands-on guide and supply
a Python framework for building operators to adapt
and use in their applications.

Key Innovations

With this paper, we contribute to the state of the art
in building energy forecasting by assessing the perfor-
mance and the robustness of four machine learning
algorithms (linear regression, random forest, fully-
connected neural network, and recurrent neural net-
work) with various sets of input features. We analyze
models in terms of their ability to predict short-term
energy demand in a building where the consumption
patterns differ significantly between training and test
data because of the Covid-19 pandemic.

We provide guidelines for practitioners by

• examining how different lookback and prediction
horizons influence the accuracy and robustness
of the machine learning models for single-step
energy demand prediction

• benchmarking models using additional input fea-
tures, such as weather data, against models pre-
dicting future energy demand from past con-
sumption values only.

• examining the potential of integrating water con-
sumption data for data-driven energy prediction.

In order not to bias the comparison, the models were
not hyper-parameter-tuned to our use case. Instead,
the Python machine learning framework, as well as
the data used in the experiments described here is
published on Github (Link will be supplied after re-

view). This allows researchers and practitioners to
reproduce the results presented in this paper, adapt
the framework for their purposes and/or develop and
improve models to match their requirements (e.g. in
terms of accuracy).

Practical Implications

• Use features engineered from date and time (time
of day, weekday, holiday), as it efficiently in-
creases model performance and robustness.

• Random forest provides a simple solution for pre-
diction tasks with adequate accuracy also in sce-
narios of changed demand patterns.

• Integrating water consumption is not generally
recommended to increase robustness, as it is only
beneficial in specific forecasting scenarios.

Introduction

The European Union proposed a comprehensive set
of measures to drastically cut greenhouse gas emis-
sions by 2030 and become the first climate-neutral
continent by 2050 (European Commission and Cli-
mate Action DG, 2019). With a share of 78%, the
energy sector is the largest contributor of emissions in
the European Union (EU) and Iceland (European En-
vironmental Agency, 2020). Driven by socioeconomic
changes, such as the trend towards larger homes and
the broad availability of energy-consuming entertain-
ment, the buildings sector has become the largest con-
tributor to the global energy demand (Allouhi et al.,
2015), accounting for 40% of the energy consumption
in the EU (European Commission, 2016).

It is apparent that building designers and opera-
tors play a principal role in the reduction of energy-
related greenhouse gas emissions. Besides traditional
energy saving measures, such as improving thermal
insulation or retrofitting heating systems, hot-water
boilers and lighting systems, Chwieduk (2003) pro-
posed the introduction of environmentally-friendly
energy technologies in the form of automation and
data analysis to control, optimize and reduce en-
ergy demand as early as 2003. Other strategies in-

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3268

https://doi.org/10.26868/25222708.2021.30806

clude increasing the share of volatile renewable en-
ergy sources (Mathiesen et al., 2015), (Chwieduk,
2003), reducing energy demand by encouraging active
user participation (Schweiger et al., 2020), (Schranz
et al., 2020), and the use of energy services such as
demand response (Meyabadi and Deihimi, 2017) or
model predictive control (Mariano-Hernández et al.,
2021). Many of these strategies rely on accurate pre-
diction of future energy demand, which remains a key
research interest.

Advances in embedded computing and cloud tech-
nologies provide researchers with large amounts of
operational data such as detailed historical energy
consumption. Among others, Rätz et al. (2019) have
highlighted the capabilities of data-driven modeling
techniques and their applications to building control
and building energy optimization.

In this paper, we compare the performance of four
different data-driven models (linear regression, a ran-
dom forest regression ensemble, a fully-connected
neural network, and a recurrent neural network) that
predict future energy demand from past observations
in a scenario where measures against the Covid-19
pandemic drastically changed consumption patterns.
We benchmark models predicting from past energy
consumption values only against models with addi-
tional input features, such as water consumption data
or weather information in terms of performance and
generalization ability. Besides, we examine if the
models are able to provide reasonable predictions for
the time during the pandemic even when they were
trained on consumption data from before the pan-
demic.

We aim to provide general observations and guide-
lines for practitioners to help them develop data mod-
els for energy forecasting, rather than present another
set of models that provide good results for the data
set used in the paper but might not work well for
their particular use case or data set. We test models
that provide straightforward implementation without
the necessity for complex hyper-parameter tuning.
We use what we consider ”default” hyper-parameter
settings, that are typically found in the literature,
and/or default choices in the Python libraries we use.
Consequently, we focus on identifying the most rel-
evant input features for prediction performance and
robustness, and how different models are affected by
the choice of feature sets, lookback and prediction
horizon.

Building Energy Forecasting: Related Work

There exists a large body of literature in the domain
of data-driven load forecasting for building energy
prediction. Latest reviews of state of the art ap-
proaches can be found in Wei et al. (2018), Fathi et al.
(2020), and Sun et al. (2020). Machine learning mod-
els, such as decision trees, support vector machines
(SVM) (Jain et al., 2014), nonlinear regression (Wei

et al., 2019), and deep neural networks (Somu et al.,
2021), all of which have been applied successfully in
the domain of energy forecasting for more than a
decade now (Zhao and Magoulès, 2012), are among
the most popular approaches.

The majority of models found in the literature use
meteorological data, features engineered from date
and time, occupancy and historical energy consump-
tion as inputs. Models described in recent studies
predict the energy demand for a myriad of build-
ing types, such as educational buildings, offices, com-
mercial and industrial complexes as well as residen-
tial buildings on various levels of aggregation, rang-
ing from single buildings over city blocks to whole
districts. Key objectives are the prediction of total
energy demand, electric power consumption or heat-
ing/cooling demand. Even when focusing on use cases
that are comparable in methodology and objective to
the present paper, i.e. the application of data-driven
methods to predict electric energy demand of a sin-
gle office building (academic/mixed-use), a substan-
tial amount of contributions can be identified.

Wang et al. (2018) apply a random forest ensemble to
predict hourly energy usage of two university build-
ings and validate the performance against a regression
tree and a SVM model. The model input consists of
weather data, including temperature, wind speed and
solar radiation, information about the time of day, the
weekday, etc. and estimated occupancy data. Hourly
occupancy is approximated using class schedules and
the number of students registered for each class, the
number of staff members working in the building and
time tables. The authors find that occupant behavior
is a key contributor to uncertainty and that the sig-
nificance of input variables, likely because of changing
operational conditions, varies for different semesters.

Walker et al. (2020) compare the performance of
seven machine learning algorithms for time series
analysis of energy consumption, including random
forests, SVMs and artificial neural networks. The
authors use the models to predict hourly energy de-
mand on individual building level and on a building
cluster consisting of 47 commercial buildings. They
base their choice of features on their understanding of
building operation and choose weather information,
categorical date and time features (day of week, time
of day) and autoregressive past consumption values
(past day and past week) for day ahead predictions
and acknowledge that the feature selection has a non-
trivial influence on model accuracy.

Gaussian process regression, a machine learning pre-
diction approach with relatively low computational
complexity is presented in Zeng et al. (2020). The
authors use standardized regression coefficients as
well as what they call domain knowledge of energy
computation to chose weather conditions and infor-
mation from occupancy schedules to predict energy

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3269

https://doi.org/10.26868/25222708.2021.30806

t0t-1t-2t-3t-4t-5 t1 t2 t3 t4 t5

prediction horizonlookback horizon

Figure 1: Lookback of four and prediction horizon of
two. Four past values (marked in green) are used
to predict one value two timesteps ahead (marked in
red).

consumption in six large commercial buildings. The
potential of transfer learning in artificial neural net-
works for 24h ahead building energy demand predic-
tion is investigated in Fan et al. (2020), using data of
507 non-residential buildings including offices, schools
and university facilities. The authors conclude that
transfer learning can be a useful approach when in-
sufficient training data is available.

Method

In this section we describe the use case and its bound-
ary conditions and approximate mathematical formu-
lation of the prediction process. We characterize the
data, its sources and the preprocessing steps we ap-
plied to it. We explain the data models, including
their inputs and outputs, outline the training process
for the neural networks and list the metrics we used.

Use Case Description

In this paper we investigate approaches to predict
hourly electric energy usage of a five-floor, mixed-use
academic building at the Graz University of Technol-
ogy (TUG) accommodating offices, seminar rooms,
laboratories and a lecture hall.

The data models we developed predict a single en-
ergy consumption value from a finite set of previously
observed values, i.e. the forecasting problem is for-
mulated as a generic regression problem (Bontempi
et al., 2013). There are two parameters to this pro-
cess: i) the lookback horizon, i.e. the number of past
observations the prediction is based on and ii) the
prediction horizon, i.e. how far the model predicts
into the future.

In Figure 1 the blue graph represents the time se-
ries development, with the solid line representing past
and the dashed line representing future values (with
respect to the current time t0). In this example, four
values from the past in conjunction with the current
value (marked with green circles) constitute the ba-
sis for projecting the value (marked as a red triangle)
of time series two steps into the future. This corre-
sponds to a lookback horizon of four and a prediction
horizon of two.

In the baseline models, predictions are inferred from
a single type of previously observed values. In the

dynamical systems approach, this is considered as es-
timating the future system state from previous and
current system states - i.e. predictions of the hourly
energy consumption are based on previous consump-
tion values only. Each input vector x is of size [n, 1],
where n = lookback horizon l + one current state.
The output y is a single scalar value, i.e. the expected
energy consumption ci at time step t+ p, where p is
the prediction horizon.

x =



ct−l

...
ct


 , y = ct+p

To improve prediction accuracy it is possible to use
additional information that is expected to be corre-
lated with the energy consumption to describe the
system state at any given point in time. Examples are
information about the outside temperature, whether
it was day or night, the hourly water consumption in
the building, or the number of registration for a lec-
ture hall or seminar room located within the building.
Using multiple characteristics to describe the system
state turns the scalar components in the input vector
x into vectors. Consequently, the input vector turns
into an input matrix X of size [n,m], where m corre-
sponds to the number of characteristics, subsequently
denoted features f ik. The model output y remains un-
changed, as we are still only interested in the future
energy consumption.

X =



f t−l
0 . . . f t−l

m
...
f t0 . . . f tm


 , y = ct+p

Recurrent neural networks are designed to handle two
dimensional inputs with a time axis and a feature
axis. For the other models, i.e. linear regression, ran-
dom forest and fully-connected network, this matrix
has to be flattened to a vector x, effectively removing
any distinction between different features of the same
time step and same features of different time steps.

x =
[
f t−l
0 . . . f t−l

m f t0 . . . f tm
]
, y = ct+p

Be aware that the energy consumption values may
or may not be part of the state description. In the
subsequent section we outline the data available to
us.

Data

In this section we describe the nature and sources of
the data we used in the experiments. The Buildings
and Technical Support (BATS) department at the
TUG manages buildings and infrastructure on three
campuses. In the course of their operations they cap-
ture real time data from various types of smart sen-
sors (Schranz et al., 2020). For the experiments de-
scribed here, the BATS department provided us with

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3270

https://doi.org/10.26868/25222708.2021.30806

consumption sequences from smart water and smart
energy meters located in a mixed-use academic/office
building.

Energy and water consumption data is available
from May, 5 2019 to July, 21 2020 in one-hour inter-
vals. It is worth noting the special character of this
timeframe as the months from March 2020 to July
2020 coincide with the Covid-19 pandemic. Due to
the measures imposed by the Austrian federal gov-
ernment and the university directorate access to the
academic facilities was restricted, classroom teaching
suspended and staff members were directed to work
from home whenever possible. This provides the op-
portunity to investigate how successful the models
are in predicting the energy demand given the sig-
nificant change in consumption behavior because of
the restrictions. This is of particular interest because
the boundary conditions stay the same, i.e. training
and test data are still from the same building but
occupancy and occupant behavior are different. All
models were trained using data recorded prior to the
measures coming into effect and tested on data from
periods where the restrictions were in place.

Occupancy data is approximated through sched-
ules exported from the TUG resource management
system. The dataset contains the dates and registra-
tions for all events and courses that take place in the
lecture hall located in the building.

Weather data is obtained through a web
API (http://at-wetter.tk) that provides access to
the open data collection published by the Austrian
”Zentralanstalt für Meteorology und Geodynamik”
(ZAMG). The data was captured at the Graz Air-
port, which is located about 8 km from the campus
site and contains, among other metrics, hourly tem-
perature measurements and the time of sunrise and
sunset.

The date and time features are engineered from
the timestamps the energy consumption data is in-
dexed with. Plots show that energy consumption am-
plitude correlates with the weekday, the occurrence of
public holidays and that consumption is, on average,
notably higher during the semester. For each time
step we calculate the weekday, a Boolean feature en-
coding whether it coincides with a public holiday, a
Boolean feature whether it is during the semester and
the time of day. The time of day and the numeric rep-
resentation of the weekday assume periodic values, 0
to 23 (because consumption is sampled hourly) and
0 to 6, respectively. To capture periodicity both fea-
tures are encoded with a sine/cosine pair (Drezga and
Rahman, 1998).

Models

We developed four data models, two statistical mod-
els (linear regression and a decision tree ensem-
ble) and two neural networks (a fully-connected se-
quential model and a recurrent network). The en-

tire framework (for data preparation, preprocess-
ing, training, benchmarking and plotting) and all
models were implemented using Python 3. For
the statistical models we used the machine learn-
ing library sklearn (https://scikit-learn.org/stable)
and for the neural networks we used the Tensor-
Flow (https://www.tensorflow.org) implementation
of the Keras API (https://keras.io).

The linear regression (LR) model is relatively sim-
ple and requires no parameter settings. As the input
samples have to be provided as one-dimensional vec-
tor, multi-feature input matrices are flattened along
the time axis in a pre-processing step.

The random forest (RF) is built from 100 esti-
mators, with no restrictions on maximum depth. A
minimum number of two samples is required for split-
ting internal nodes, at each leaf node there has to be
at least one sample. The mean squared error (MSE)
is used as splitting criterion and all input features are
used in the split. The random forest requires input
samples to be vectors, i.e. multi-feature inputs have
to be flattened along the time dimension.

The neural networks are built as a stack of lay-
ers with inputs of variable size. They accept either
a vector (only one scalar value per lookback step) or
a [n,m] matrix of multiple features for multiple time
steps (although the fully-connected network flattens
it internally) and produce variable size outputs. With
this architecture, it is possible to either predict mul-
tiple system characteristics at one time step or one
characteristic at multiple time steps in the future.
However, to obtain comparable results to the ones
generated by the statistical methods, we used exactly
one output, i.e. the hourly energy consumption at
one single point in the future defined by the predic-
tion horizon.

All networks are trained on batches of 72 samples
using an RMSprop optimizer with a learning rate of
0.001, ρ and ε parameters of 0.9 and 1e−7 respectively.
We set the maximum number of training epochs to
200 but implemented early stopping to avoid overfit-
ting. The training data is split such that the last 20%
of the samples (subsequently called validation data)
in the set are used to monitor convergence. Train-
ing is stopped when the mean squared error on the
validation data does not decrease for 30 consecutive
training epochs.

The fully-connected neural network (NN) flat-
tens the input along the time dimension, i.e. it uses
the same input as the two statistical methods. The
flattened input passes through two layers consisting
of 64 rectified linear units (ReLU) and is output in a
single dense layer with one unit.

The recurrent neural network (RNN) uses an
architecture designed specifically for time series pre-
diction. The network sequentially applies transforma-
tions along the input’s time axis, remembering infor-

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3271

https://doi.org/10.26868/25222708.2021.30806

Table 1: Errors of energy demand prediction for all models using different feature combinations. The bold
numbers indicate the best performing models for every feature combination, while the gray cells indicate the
overall best performing combination of model and features.

Features Baseline Model: Energy consumption Energy consumption, weather
Prediction horizon 1h 3h 6h 12h 24h 1h 3h 6h 12h 24h

LR
CV-RMSE 0.14 0.24 0.28 0.30 0.31 0.14 0.23 0.27 0.29 0.32
MAPE 6.5 12.1 16.7 20.7 23.0 6.8 13.0 17.8 21.0 22.7
R2 0.78 0.40 0.16 0.07 -0.03 0.78 0.44 0.22 0.10 -0.04

RF
CV-RMSE 0.14 0.23 0.25 0.27 0.28 0.14 0.22 0.24 0.25 0.27
MAPE 5.8 9.5 12.8 16.5 19.0 5.5 8.7 10.7 14.2 15.5
R2 0.78 0.44 0.33 0.24 0.16 0.79 0.47 0.39 0.32 0.22

NN
CV-RMSE 0.15 0.22 0.26 0.27 0.29 0.14 0.21 0.24 0.29 0.29
MAPE 6.4 10.4 12.5 15.3 16.2 6.4 9.7 12.5 20.3 18.3
R2 0.77 0.51 0.30 0.25 0.13 0.79 0.55 0.41 0.11 0.15

RNN
CV-RMSE 0.15 0.24 0.28 0.29 0.28 0.14 0.22 0.25 0.30 0.29
MAPE 5.9 10.7 17.3 21.6 18.0 6.1 11.6 12.8 18.3 20.3
R2 0.77 0.39 0.18 0.13 0.20 0.79 0.48 0.34 0.08 0.11

Features Energy consumption, datetime Energy consumption, water
Prediction horizon 1h 3h 6h 12h 24h 1h 3h 6h 12h 24h

LR
CV-RMSE 0.14 0.22 0.25 0.26 0.27 0.14 0.23 0.28 0.30 0.32
MAPE 6.7 12.5 16.0 16.8 16.4 6.6 12.4 17.7 22.2 25.1
R2 0.79 0.47 0.32 0.28 0.27 0.79 0.43 0.20 0.08 -0.08

RF
CV-RMSE 0.14 0.19 0.21 0.20 0.23 0.15 0.23 0.25 0.24 0.29
MAPE 5.5 7.7 9.0 9.9 11.9 5.9 9.3 11.8 15.2 19.4
R2 0.79 0.61 0.55 0.57 0.44 0.78 0.45 0.34 0.37 0.12

NN
CV-RMSE 0.14 0.22 0.25 0.27 0.28 0.14 0.21 0.25 0.27 0.29
MAPE 6.9 14.3 16.7 20.3 16.6 6.0 9.1 12.6 15.5 16.0
R2 0.80 0.49 0.35 0.23 0.20 0.79 0.55 0.35 0.26 0.14

RNN
CV-RMSE 0.14 0.20 0.23 0.29 0.22 0.14 0.24 0.27 0.27 0.30
MAPE 6.2 8.9 13.2 19.9 12.5 6.2 11.4 16.2 18.2 23.8
R2 0.79 0.56 0.43 0.11 0.51 0.78 0.38 0.21 0.22 0.06

mation about each time step. In our configuration,
this information is used to produce one single out-
put, i.e. the projected hourly energy consumption.
The network consists of 32 long short-term memory
(LSTM) units (Hochreiter and Schmidhuber, 1997)
with hyperbolic tangent activation, sigmoid recurrent
activation and no dropout. The LSTM layer outputs
a single value into a dense layer with one unit.

Metrics

To assess and compare model performance we use
three error metrics: the coefficient of variance of the
root mean square error (CV-RMSE), the mean abso-
lute percentage error (MAPE) and the coefficient of
determination (R2). All three metrics are frequently
applied to evaluate model performance for building
energy prediction in the literature (Sun et al., 2020).
Besides, all of them are independent of the magni-
tude of the predicted target values, which means the
results are more comparable in different settings (e.g
other buildings). Additionally, the CV-RMSE is fea-
tured in the ASHRAE Guideline for measurement
of energy and demand savings (ASHRAE Standards
Committee, 2002).

Results

All models were trained separately using six different
input feature combinations and lookback horizons of
12, 48 and 72 hours to predict hourly energy demand
one, three, six, 12 and 24 hours into the future. The
following feature combination were tested:

• energy demand

• energy demand + weather conditions

• energy demand + date/time features

• energy demand + water consumption

• energy demand + occupancy

• combination of all features above

Results show that models using either occupancy or a
combination of all features perform poorly. It appears
that occupancy data, approximated by the number of
registrations for courses and events held in the build-
ing does not properly reflect the actual number of
occupants. Especially, because the registration man-
agements system does not seem to be reflecting the
changes caused by the Covid-19 restrictions. Conse-
quently, these two combinations are omitted in the
subsequent analysis. Table 1 contains the results for
all other feature combinations for all models with a
lookback horizon of 24 hours.

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3272

https://doi.org/10.26868/25222708.2021.30806

Figure 2: Comparison of the CV-RMSE for all model and feature combinations.

Figure 2 shows the prediction accuracy on the test
data for models with a lookback horizon of 24 hours
in the first row and 72 hours in the second row. It can
be seen that for one-hour-ahead prediction all mod-
els perform reasonably well for any choice of input
features and lookback horizon. Conversely, 24-hour
ahead prediction seems to be difficult for all mod-
els. For the three- to 12-hour-ahead prediction, dif-
ferences in performance between the models and the
feature choices are most noticeable. Changing the
lookback horizon from 24 to 72 hours does not gen-
erally improve accuracy, although the RF seems to
benefit slightly from a longer lookback when it uses
energy consumption and the date/time features as
input. Including water consumption causes no signif-
icant change in accuracy for neither model or choice
of lookback.

Discussion

Experiments show that the choice of input features
and lookback horizon has a varied influence on the
different models. We subsequently discuss the find-
ings for each model in detail. There are however,
some general observations from all experiments:

• Lookback should be at least 24h.

• All models/features show similar performance
for one-hour-ahead prediction.

• Using weather data or water consumption data
does not increase accuracy in general (except for
fully-connected NN).

Linear regression:

• Using date/time features significantly increases
prediction performance compared to using pre-

viously observed energy consumption only.

• Changing the lookback from 24 to 72 hours
causes no noticeable improvement.

Random forest:

• Using date/time features significantly increases
prediction performance compared to using pre-
viously observed energy consumption only.

• A longer loockback horizon improves perfor-
mance.

• Results indicate that RF has the best general-
ization ability of all models we tested and that it
adapts well to the changes in the energy demand
patterns.

• RF is the model that is least sensitive to the
choice of input features.

Fully-connected neural network:

• With a longer lookback horizion, using hourly
water consumption slightly increases prediction
performance compared to using previously ob-
served energy consumption only.

• When using previous consumption values alone
the NN shows similar performance to the RF
model.

• The choice of feature combination and lockback
horizon interact with each other.

• The NN does not adapt well to changed demand
patterns.

• The NN is very sensitive to the choice of input
features.

Recurrent neural network:

• Date/time features significantly increase perfor-
mance if the lookback horizon and the prediction

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3273

https://doi.org/10.26868/25222708.2021.30806

horizon are 24 hours.

• Performance does not increase with longer look-
back horizons.

• The RNN does not adapt well to changed de-
mand patterns.

• The RNN is very sensitive to the choice of input
features.

Conclusion

With the development in machine learning algorithms
for time series analysis, practitioners are provided
with a myriad of choices. Deciding on a suitable al-
gorithm for energy demand prediction in a building is
non-trivial and depends on the availability of data. In
this paper we compared four machine learning mod-
els, commonly found in the literature, in terms of
their generalization performance and in terms of how
using different sets of input features affects accuracy.

We evaluated the models on three metrics, the coeffi-
cient of variance of the root mean square error (CV-
RMSE), the mean absolute percentage error (MAPE)
and the coefficient of determination (R2), all of which
are widely used to assess building energy demand pre-
diction performance in the literature.

Besides previous consumption values, we used fea-
tures engineered from date and time (time of day,
weekday, holiday), weather data (outside tempera-
ture and daylight hours), estimates for occupancy and
water consumption data as model inputs. We trained
all models on data captured between May 2019 and
March 2020, before the onset of the Covid-19 pan-
demic in Austria, and tested them on data recorded
between March and July 2020, where strict measures
imposed by the federal government gravely affected
energy consumption patterns. The energy and water
consumption data was recorded in an academic office
building in hourly intervals. We benchmarked differ-
ent lookback and prediction horizons for the models,
ranging from 12 to 72 hours for the lookback and 1
to 24 hours for prediction.

Results show that using features engineered from date
and time affects prediction performance most signifi-
cantly, regardless of the choice of model and lookback
horizon. Additionally, we found that simple models,
such as linear regression and random forests perform
very well both in terms of generalization ability and
robustness with respect to the choice of input features
and lookback horizon. Especially the random forests
showed exceptional generalization performance for all
choices of input features. Conversely, the neural net-
works performed well when predicting from previous
consumption values alone, but were sensible to the
choice of inputs. It stands to reason that this issue
could be addressed with regularization techniques,
such as dropout layers, L1 or L2 regularization. Be-
sides, we found that the choice of input features and
the choice of lookback horizons for the neural net-

works interacted with each other. Consequently, we
did not find neural networks models to adequately
fulfill the requirement of working well without exten-
sive testing and tweaking. Using water consumption
data to predict energy demand seemed to improve
performance of the neural networks, however, we did
not find the results to be conclusive. The benefit of
integrating water consumption data into energy pre-
diction models has to be investigated in more detail
in follow-up research.

References
Allouhi, A., Y. El Fouih, T. Kousksou, A. Jamil,

Y. Zeraouli, and Y. Mourad (2015, December). En-
ergy consumption and efficiency in buildings: cur-
rent status and future trends. Journal of Cleaner
Production 109, 118–130.

ASHRAE Standards Committee (2002). ASHRAE
Guideline: Measurement of Energy and Demand
Savings. ASHRAE Guideline 14-2002 .

Bontempi, G., S. Ben Taieb, and Y.-A. Le Borgne
(2013). Machine Learning Strategies for Time Se-
ries Forecasting. In M.-A. Aufaure and E. Zimányi
(Eds), Business Intelligence: Second European
Summer School, eBISS 2012, Brussels, Belgium,
July 15-21, 2012, Tutorial Lectures, Lecture Notes
in Business Information Processing, pp. 62–77.
Berlin, Heidelberg: Springer.

Chwieduk, D. (2003, September). Towards
sustainable-energy buildings. Applied Energy 76 (1-
3), 211–217.

Drezga, I. and S. Rahman (1998). Input variable
selection for ann-based short-term load forecast-
ing. IEEE Transactions on Power Systems 13 (4),
1238–1244.

European Commission (2016). Proposal for a direc-
tive of the European Parliament and of the coun-
cil amending Directive 2010/31/EU on the energy
performance of buildings. COM(2016) 765 final .

European Commission and Climate Action DG
(2019). Going climate-neutral by 2050: a strategic
long-term vision for a prosperous, modern, com-
petitive and climate-neutral EU economy. OCLC:
1140133232.

European Commission, DG Climate ActionEuro-
pean Environment Agency (2020). Annual Euro-
pean Union greenhouse gas inventory 1990–2018
and inventory report 2020: Submission under the
United Nations Framework Convention on Climate
Change and the Kyoto Protocol .

Fan, C., Y. Sun, F. Xiao, J. Ma, D. Lee, J. Wang,
and Y. C. Tseng (2020). Statistical investigations of
transfer learning-based methodology for short-term

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3274

https://doi.org/10.26868/25222708.2021.30806

building energy predictions. Applied Energy 262,
114499.

Fathi, S., R. Srinivasan, A. Fenner, and S. Fathi
(2020). Machine learning applications in urban
building energy performance forecasting: A sys-
tematic review. Renewable and Sustainable Energy
Reviews 133, 110287.

Hochreiter, S. and J. Schmidhuber (1997, Novem-
ber). Long Short-Term Memory. Neural Computa-
tion 9 (8), 1735–1780.

Jain, R. K., K. M. Smith, P. J. Culligan, and J. E.
Taylor (2014). Forecasting energy consumption
of multi-family residential buildings using support
vector regression: Investigating the impact of tem-
poral and spatial monitoring granularity on perfor-
mance accuracy. Applied Energy 123, 168 – 178.

Mariano-Hernández, D., L. Hernández-Callejo,
A. Zorita-Lamadrid, O. Duque-Pérez, and F. San-
tos Garćıa (2021). A review of strategies for
building energy management system: Model
predictive control, demand side management, op-
timization, and fault detect & diagnosis. Journal
of Building Engineering 33, 101692.

Mathiesen, B., H. Lund, D. Connolly, H. Wenzel,
P. Østergaard, B. Möller, S. Nielsen, I. Ridjan,
P. Karnøe, K. Sperling, and F. Hvelplund (2015).
Smart energy systems for coherent 100% renew-
able energy and transport solutions. Applied En-
ergy 145, 139 – 154.

Meyabadi, A. and M. Deihimi (2017). A review of
demand-side management: Reconsidering theoret-
ical framework. Renewable and Sustainable Energy
Reviews 80, 367 – 379.

Rätz, M., A. P. Javadi, M. Baranski, K. Finkbeiner,
and D. Müller (2019). Automated data-driven
modeling of building energy systems via machine
learning algorithms. Energy and Buildings 202,
109384.

Schranz, T., K. Corcoran, T. Schwengler, L. Eckers-
dorfer, and G. Schweiger (2020). Mobile applica-
tion for active consumer participation in building
energy systems. In Monsberger, Michael, Hopfe,
Christina Johanna, Krüger, Markus, and Passer,
Alexander (Eds), BauSIM 2020 - 8th Conference
of IBPSA Germany and Austria, Proceedings, pp.
281–287.

Schranz, T., G. Schweiger, S. Pabst, and F. Wotawa
(2020). Machine Learning for Water Supply Su-
pervision. In H. Fujita, P. Fournier-Viger, M. Ali,
and J. Sasaki (Eds), Trends in Artificial Intelli-
gence Theory and Applications. Artificial Intelli-
gence Practices, Lecture Notes in Computer Sci-
ence, Cham, pp. 238–249. Springer International
Publishing.

Schweiger, G., L. V. Eckerstorfer, I. Hafner,
A. Fleischhacker, J. Radl, B. Glock, M. Wastian,
M. Rößler, G. Lettner, N. Popper, and K. Corco-
ran (2020). Active consumer participation in smart
energy systems. Energy and Buildings 227, 110359.

Somu, N., G. Raman M R, and K. Ramamritham
(2021). A deep learning framework for building
energy consumption forecast. Renewable and Sus-
tainable Energy Reviews 137, 110591.

Sun, Y., F. Haghighat, and B. C. M. Fung (2020).
A review of the-state-of-the-art in data-driven ap-
proaches for building energy prediction. Energy
and Buildings 221, 110022.

Walker, S., W. Khan, K. Katic, W. Maassen, and
W. Zeiler (2020). Accuracy of different machine
learning algorithms and added-value of predicting
aggregated-level energy performance of commercial
buildings. Energy and Buildings 209, 109705.

Wang, Z., Y. Wang, R. Zeng, R. S. Srinivasan, and
S. Ahrentzen (2018). Random Forest based hourly
building energy prediction. Energy and Build-
ings 171, 11–25.

Wei, N., C. Li, X. Peng, F. Zeng, and X. Lu (2019).
Conventional models and artificial intelligence-
based models for energy consumption forecasting:
A review. Journal of Petroleum Science and Engi-
neering 181, 106187.

Wei, Y., X. Zhang, Y. Shi, L. Xia, S. Pan, J. Wu,
M. Han, and X. Zhao (2018). A review of data-
driven approaches for prediction and classification
of building energy consumption. Renewable and
Sustainable Energy Reviews 82, 1027–1047.

Zeng, A., H. Ho, and Y. Yu (2020). Prediction of
building electricity usage using Gaussian Process
Regression. Journal of Building Engineering 28,
101054.

Zhao, H. and F. Magoulès (2012). A review on the
prediction of building energy consumption. Renew-
able and Sustainable Energy Reviews 16 (6), 3586–
3592.

__

__
Proceedings of the 17th IBPSA Conference
Bruges, Belgium, Sept. 1-3, 2021

3275

https://doi.org/10.26868/25222708.2021.30806

	I Overview
	Introduction
	Motivation
	Related Disciplines
	Numerical Methods
	Dynamical Systems
	Modeling and Simulation
	Co-simulation
	Surrogate Modelling
	Optimization
	Machine Learning
	Deep Learning
	System Identification and Control

	Research Objective
	Reader's Guide
	Contributions
	Supplemental Code

	Modeling and Simulation
	What is a simulation?
	Example: Pendulum
	Numerical Solvers
	Modeling error

	Scientific Machine Learning
	Optimization
	Gradient-Descent
	Closed-form Solution
	Automatic Differentiation

	Differentiable Simulation
	Neural Network-based models
	Multi-Layer Perceptron
	Taxonomy
	Neural Ordinary Differential Equations
	Physics-Informed Neural Networks

	Model-based Fault Identification
	Simulation and Control
	Workflow
	Physical System
	Identification
	Designing the Controller

	Co-simulation
	Example: Controlled Robotic Arm
	Controlled Robot
	Controller

	Monolithic vs Co-simulation
	Functional Mock-up Interface
	Implementing a FMU

	Universal Functional Mock-up Units
	Machine Learning and Co-Simulation

	Conclusion
	SciML in Simulation
	Systematic Benchmarking
	Experimental Design and Training
	Knowledge Incorporation

	Tool Integration
	Ease of use
	Extend Support for ML features
	Performance Benchmarking

	SciML in related applications
	Parameter Estimation
	Control
	Design Optimization

	Thank you

	Bibliography

	II Publications
	Constructing Neural Network Based Models for Simulating Dynamical Systems
	A Universal Mechanism for Implementing Functional Mock-up Units
	Rapid Prototyping of Self-Adaptive-Systems using Python Functional Mock-up Units
	Neuromancer Framework
	Portable runtime environments for Python-based FMUs: Adding Docker support to UniFMU
	Coupling physical and machine learning models: case study of a single-family house
	Energy Prediction under Changed Demand Conditions: Robust Machine Learning Models and Input Feature Combinations

